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RUNGE-KUTTA DISCONTINUOUS GALERKIN METHODS FOR

CONVECTION-DOMINATED PROBLEMS

BERNARD() COCKBURN* AND CttI-WANG SHU t

Abstract. In this paper, u,_ review tl2e de_'elopment of the Runge-Kutta discontinuo_s Galerkin (RKDG )

methods for non-linear convection-dominated problems. These robust and accurate methods have made

their way into the main stream of computational fluid dynamics and are quickly finding use in a wide

variety of applications. They combine a special class of Runge-Kutta time discretizations, that allows the

method to be non-linearly stable regardless of its accuracy, with a finite element space discretization by

discontinuous approximations, that incorporates the ideas of numerical fluxes and slope limiters coined

during the remarkal)le development of the high-resolution finite difference and finite vohnne schemes. The

resulting RKDG methods are stable, high-order accurate, and highly parallelizable schemes that can easily

handle complicated geometries and t)oundary conditions. We review the theoretical and algorithmic aspects

of these methods and show several applications including nonlinear conservation laws, the compressible m_d

incompressible Navier-Stokes equations, anti Hamilton-Jacobi-like equations.

Key words, discontinuous Galerkin methods, non-linear conservation laws, convection-diffusion equa-

tions

Subject classification. Applied and Numerical Mathematics

1. Introduction. In this paper, we review the work done on Runge-Kutta discontinuous Galerkin

(RKDG) methods for convection-dominated problems, These are methods that have recently fom)d their

way into the main stream of computational fluid dynamics and are currently being applied to a variety of

situations including problems for which they were not originally intended, like purely elliptic systems.

As pointed out in [40], practical problenls in which non-liuear convection plays an important role arise

in applications as diverse as nmteorology, weather-forecasting, oceanography, gas dynamics, turbomachinery,

turbulent flows, granular flows, oil recovery simulation, modeling of shallow waters, transport of contaminant

in porous media, viscoelastic flows, semiconductor device simulation, magneto-hydrodynamics, and electro-

magnetism, among many others. This is why devising robust, accurate and efficient methods for numerically

solving these problems is of considerable importance.

1.1. The RKDG method for purely convective non-linear problems. The need for stlch meth-

ods prompted and sustained the remarkable development of the so-called high-resolution finite difference and

finite volume methods for non-linear hyperbolic systems in divergence form:

ut + V . f(u) = 0;

see, for example, the monograph by LeVeque [78]. The satisfactory approximation of the exact solutions of

these systems is particularly difficult because of the presence of discontinuities in the exact solution. Let us
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describe the main difficulty in the scalar case. On the one hand, the physically relevant solution, called the

eutropy solution, call be captured by means of the so-called monotone schemes; unfortunately, they are only

first-order accurate when the solution is smooth and display a poor approximation of moving discontinuities.

On the other hand, high-order accurate schemes generate slmrious oscillations around the discontinuities

which, due to the non-linear nature of the equation, can also induce tile convergence of the method to a

solution that is not the entropy solution; see the 1976 paper by Harten, Hyman and Lax [62].

This impasse between high-order accuracy and convergence to the entropy solution was solved by the

high-resolution schemes. The success of these methods is mainly due to two facts. First, tile non-linear

conservation laws are enforced locally; that is, the averages of the approximation u j, on each element or cell

K, are evolved in time by imposing that

f(Uh)t+_'. I, f(uh).,_Kd.s=O,

where nh- denotes the outward unit normal to OK and f(uh) is the so-called approximate Riemanu solver

or numerical flux. We can see that the numerical flux _(Uh) is an approximation to the value of f(u) on the

boundary of the elements K. It is devised in such a way that, when u is a scalar-valued function and uh is

piecewise-constant, the resulting method is a monotone scheme; as we pointed out, it is always stable and

converges to the exact solution. Second, when the approximate solution Uh is not piecewise-constant, the

stability of the method does not follow from the form of the numerical fluxes anymow and has to be enforced

by means of flux or slope limiters. Indeed, once the averages have been evolved in time; the remaining degrees

of freedom of uh are usually determined fi'om them by means of a reconstruction step whose main objective

is to achieve high-order accuracy; the flux or slope limiters are then applied in order to render the method

stable while maintaining its high-order accuracy.

However, these methods cannot handle complex geometries and boundary conditions and achieve high-

order accuracy as easily as finite element methods do. On the other hand, most finite element methods for

non-linear conservation laws do not enforce the conservation law locally, a property highly valued in practice,

and do not satisfy maximum principles (or other stability properties like total variation boundedness) which

are essential in lnany practical situations. More importantly, they give rise to systems of equations that have

to be solved implicitly which renders theIn quite inefficient when strong shocks are present; see the analysis

of this fact for non-linear scalar hyperbolic conservation laws by Bourgeat and Cockburn [23].

The RKDG methods, introduced and studied by the authors and their collaborators [44, 43, 41, 37, 46],

realize a fortunate compromise between these two types of numerical schemes by incorporating the ideas of

numerical fluxes and slope liiniters into a finite element framework. Next, we give a brief idea of how to

construct the RKDG methods. We proceed in three steps:

Step 1: The DG space discretization. First, the conservation law is discretized in space by using

a discontinuous Galerkin (DG) method. A discontinuous approximate solution uh is sought such that when

restricted to the element K, it belongs to the finite dimensional space lt(K), typically a space of polynomials.

It is defined by imposing that, for all vh E//(K),

Note that it is here that the notion of approximate Riemann solver or numerical flux is actually incorporated

into the method. Like all finite element methods, complex geometries and boundary conditions are very

easily dealt with and high-order accuracy can be easily obtained. Moreover, since the approximation is

discontinuous, the so-called mass matrix is block diagonal and hence, easily invertible.



Step 2: The RK time discretization. Then, we discretize the resulting system of ordinary differential

equations, dub = L(uj_), by using special explicit high-order accurate Runge-Kutta (RK) methods:

1. Set u_°) = u_;

2. For i = 1 ..... K compute tile intermediate functions:

i- 1

4i)= ,. = ')+
l! h, Ozil

I=0

3. Set u_ +l _c---- u h .

The distinctive feature of these RK methods is that their stability follows from the stability of the mapping

(/) .ut, _ tv_[ defining the intermediate steps. More precisely, if for some semi-norm ] -I we have that lu,_[ I <-

fu_ t) I, then we have [" n+l

Step 3: The generalized slope limiter. Finally, a generalized slope limiter AIIh, which is a non-linear

projection operator, is devised in such a way that if u_ I) = AIlhvh for some flmction _l,, then the mapping

_i(,[) _ 'w_I is stable, that is, [ u,_[ I < In(t/) ].

The above time-marching algorithin is then modified as follows:

1. Set ,,(o) _.,,._",,,

2. For i = 1, ...,/C compute the i'ntermediate functions:

kl=O OLH

n+l iC
3. Set u h = u h .

This is the general form of the RKDG methods; they can be proven to be stable in the semi-norm I " I, that

is, that [ uh" I -< [u,_ I <- C] Uo [, if the approximation to the initial data,, u°l, is chosen in a reasonable way, of

course.

Note that the RKDG method is devised in such a way that when t)iecewise constant approximations

are used for the space discretization and ttle forward Euler method is emph)yed for tile time discretization,

a standard finite vohune scheme is obtained; in this case, tile generalized slope limiter AIIt, is nothing but

the identity. Thus, the RKDG methods can be considered to be a generalization of finite volume methods.

When high-order degree polynomials are used, a high-order RK method that matches the accuracy of the

space discretization has to be used which renders the resulting method high-order accurate. In such a

case, the use of the generalized slot)e limiters AHh is crucial to ensure the stability of the method; indeed,

although the use of tile generalized slope limiter" turns out to be unnecessary when the solution is very

smooth, it is indispensable when shocks are present. The fact that it is possible to construct generalized

slope limiters AIIh that enforce stability without degrading the high-order accuracy achieved t)y the space

and time discretizations is one of the most remarkable features of the construction of ttle RKDG methods.

Note also the high degree of locality that the RKDG methods display. First, thanks to the structure of

the DG space discretization and to tile explicitness of the RK time discretization, to update the degrees of

fi'eedom inside an element K, only the information about the elements sharing edges with K is used in each

inner RK step. This property is not shared by any of the above mentioned high-resolution methods, which

in their reconstruction step typically use the information associated to far-away elements. Finally, let us

point out that to compute AIIh (ut_) in the element K, only information about ut, on elements sharing edges

with K is necessary. These properties render the R,KDG methods highly parallelizabte.

Let us briefly illustrate some of the main features of the RKDG methods:



• Capturing shocks. First, let us show in a simple example that the RKDG methods can capture shocks

as well as any high-resolution finite difference or finite vohlme scheme <toes. Consider the approximation of

tile entrol)Y solution of tile inviscid Burgers equation

u_ + (u2/2)x =0,

on the domain (0, 1) x (0, T) with initial condition 1/4 + sin(_(2 x- 1))/2 and periodic boundary conditions.

Ill Fig. 1.1, we display tile RKDG solution using piecewise linear and piecewise quadratic approximations;

note how, in both cases, tile shock has been captured within three elements as would be expected of an),

high-resolution schenle.
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FIC. 1.1. Burgers equation: Comparison of the exact and the RKDG solutions obtained with Ax = 1/40 at T = 0.40.

Full domain (left) and zoom on three elements (right) the first of which contains the exact shock. Exact solution (solid line),

piecewise linear approximation (dotted line), and pieeewise quadratic approximation (dashed line).

• The artificial dissipation and the order of accuracy. Let us now illustrate the relation between

the dissipation of the RKDG methods and their order of accuracy. Consider the one and two dimensional

transport equation

ut +Ux =0, or ut+ux+uy=O,

on the domain (0,270 x (0 T) or (0,27r) 2 x (0, T) with the characteristic function of the interval (_, 3___)

or the square (_, 3.@)2 as initial condition and periodic boundary conditions; this is tile case in which the

dissipation of the scheme is going to be most noticeable since, unlike the previous case, the characteristics

do not carry information into the discontinuity but parallel to it. To further accentuate the effect of the

dissipation of the scheme, we compute the solution after a long tinle, namely, at T = 100rr (50 time periods).

The results for the second and seventh order accurate RKDG methods are shown in Fig. 1.2, where we can

clearly see that, as the accuracy increases, the dissipation decreases dramatically. These results are obtained

without linliters. For linear problems, even with discontinuous solutions, limiters are usually not necessary

for numerical stability (the numerical results are oscillatory but oscillations are reduced and localized when

the order of th(' scheme increases). The result stays the same if we apply the TVB limiters detailed in section

2 with the constant M suitably chosen.
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FIe:. 1.2. 7_'ansport equation: Comparison of the exact and the RKDG solutions at 7" = lO07r with second order (p1,

left,) and seventh order (p6, right) RKDG methods. 7bp: one dimensional results with 40 cells, exact solution (solid line) and

numerical solution ('dashed line and symbols, one point per cellJ; Bottom: two dimensional _sults with 40 × 4(I cells.

• Approximation of complex solutions. Let us show that the RKDG method can handle solutions

with very complicated structure. Consider the classical double-Mach reflection problem for the Euler equa-

tions of gas dynanfics. In Fig. 1.3, by Cockburn and Shu [46], details of the approximation of the density

are shown. Note that the strong shocks are very well resolved by the RKDG solution using piecewise linear

and pieeewise quadratic polynomials defined on squar'es. Also, note that there is a remarkable improvement

in the approximation of the density near the contacts when going from linear to quadratic polynomials.

• Curved boundaries. To illustrate the importance of approximating as accurately as possible the

boundaries of the physical domain and the easiness with which this is achieved by using the RKDG methods,

we show the results obtained by Bassi and Rebay [19] for the Euler equations for the classical two-dimensional

isentropie flow around a circle.

In Fig. 1.4, we display part of the grid (top) and the corresponding solution using p1 elements (middle).

Note that in this grid, the circle is approximated by a polygon; since each of the kinks of the polygon

introduces non-physical entropy production which is carried downstream, the approximate solution presents

a non-physical wake which does not disat)pear t)y further refining the grid. However, by simply taking into

account the exact shape of the boundary, a remarkably improved approximation is obtained, as can be seen

in Fig. 1.4 (bottom).
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* Parallelizability. Finally, let us address the parallelizability of the RKDG method. In Table 1.1

below, we display the results obtained by Biswas, Devine and Flaherty [22]; we see the solution time and

total execution time for the two-dimensional problem

on the domain (-zr,,'r) 2 x (0, T) with initial condition u(x,y,O) = sin(Trx) sin(zry) and periodic boundary
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FIG. 1.4. Grid 'g4 × 16" with a piccewise linear approximation of the circle (top), the corresponding solution (Maeh

isolines) using P_ elements (middle), and the approximation when the cirele is taken exactly and pl elements are used

(bottom) .

conditions. Biswa.s, Devine and Flaherty [22] used 256 elements per processor and ran the RKDG method

with polynomials of degree two and 8 time steps; the work per processor was kept constant. Note how the

the solution time increases only slightly with the dimension of the hyI)ercube and the remarkable parallel

efficiency of the method.

1.2. The LDG space discretizations for convection-diffusion problems. Tile excellent results

given by the RKDG methods for purel,_, convective problems promt)ted several authors to try to extend

them to the more complicated physical problems in which although convection might be a dominating force,



TABLE 1.1

,_caled parallel e]Jic;ency. Solution l_mes (without If()) and total execution times measured on the nCUBE/2.

Number of

t)rocessors

Work (W) Solution

time

(se_s.)

Solution

parallel

efficiency

Total

time

(sees.)

Total

parallel

e.fficiency

8

16

32

64

128

256

18,432

36,864

73,728

147,456

294,912

589,824

1,179,648

2,359,296

4,718,592

926.92

927.06

927.13

927.17

927.38

927.89

928.63

930.14

933.97

99.98%

99.97%

99.97%

99.95%

99.89%

99.81%

99.65_

99.24%

927.16

927.31

927.45

927.58

928.13

929.90

931.28

937.67

950.25

99.98%

99.96%

99.95%

99.89%

99.70%

99.55%

98.88_:

97.57_:

other physical phenomena must be taken into account. An early attempt, for example, was made in 1995 by

Chen, Cockburn, Jerome and Shu [32] and 1)y Chen, Cockburn, Gardner and Jerome [31] in the framework

of seniiconductor device simulation; there, a DG st)ace discretization was combined with standard mixed

method elements for second-order elliptic t)roblems.

In 1997, Bassi and Rebay [18] made a breakthrough in the framework of the comt)ressible Navier-Stokes

equations; they rewrote the equations as a first-order system and then diseretized it by using the DG space

discretization technique. Let us show their results for the laminar, sut)-sonic flow around the NACA0012

airfoil at an angle of attack of zero degrees, free stream Maeh nunlber M = 0.5, and Reynolds number

equal to 5000. In Fig. 1.5, by Bassi and Rel)ay [18], details of the results with cubic polynomials defined on

triangles are shown; the edges of the triangles touching the airfoil are cu_Jed. Note how the boundary layer

is captured within only a few layers of elements and how its separation at the trailing edge of the airfoil has

been clearly resolved.

These remarkable results prompted the authors to introduce in 1998 the local discontinuous Galerkin

(LDG) space discretization [45] by generalizing the method of Bassi and Rebay [18] and applying it to general

convection-diffusion systems. The LDG method is in the same form as the general DG space discretization

used for purely convective non-linear systems, with a different guiding principle for the choice of the numerical

fluxes. When used with the special BK time discretizations and the generalized slope limiters described

above, we obtain an RKDG method.

Of course, it is efficient to use RK time discretizations for convection-diffusion problems only if the

conw,(:tion is actually dominant, but, time discretizations and slope limiters aside, what the work of Bassi

and Rebay [18] and Cockburn and Shu [45] showed is that DG discretizations could be used for a wide range

of equations for which the DG methods had not been intended for originally, like, for example, purely elliptic

equations.

To illustrate how easy it is to define LDG methods for those problems, let us show how to diseretize the

model elliptic problem -Au = f in the domain l_ with some suitable boundary conditions. First, we rewrite

our equation as the first-order system

q = Vu, -V.q = f in Ft.



FIG.1.5.Compressible Navier-Stokes equations: Mach isolines around the NACAO012 airfoil. Reynolds number of 5000,

Mach number of 0.5 and zero angle of attack. Details of the approximation of the boundary layer at the front (top) and at the

trailing edge of the airfoil (bottom). Cubic polynomials on triangles (with curved edges on the airfoil).

Then, we seek an approxiInation (qa, Uh) whose restriction to the element K is taken in the space Q(K) x

h'(K); it is determined by entbreing the above conservation laws element by element, that is, by imposing

that, for all (r, v) E Q(K) x/d(K),

£ q,, .rdx = -- _ Uh V.rdx + _h. iih r.nhds,

where qh and uh are the numerical fluxesand have to be suitablydefinedto ensure the stabilityand optimal



accuracy of the LDG methods; also, they capture the information of the boundary conditions.

Tile LDG nlethods can be considered to be mixed finite element methods since different at)t)roxiniations

of u and Vu are sought. However, unlike them, the auxiliary variable qh carl be easily eliminated from the

equations. Indeed, since, for all LDG methods, the numerical flux 'ut, is independent of qh, we can simply

use the first equation of the method to solve for qh in terms of uh element-by-element; this local solvability

is what gives its name to tile LDG methods.

1.3. Flexibility with the mesh. Note also that, unlike any other finite element method, the RKDG

and LDG methods can easily deal with meshes with hanging nodes and dements of several shapes since no

inter-element continuity is required. This renders them particularly well suited for hp-adaptivity and for

handling situations in which non-matching grids are necessary. These features have attracted tile attention

of many researchers who are currently vigorously studying and applying them to elliptic and parabolic

problems. Although this is ongoing work, we briefly review it here mostly with the intention of displaying

several promising lines of further development.

1.4. The content of this review. In this paper, we expand the brief presentation of tile RKDG

methods displayed in this section and provide the corresponding bibliographical notes; we will freely take

material from [34] and [35]. We begin, in section 2, by describing in full detail the RKDG methods for

non-linear scalar hyperbolic (:onservation laws in one space dimension. Extensions to systems of non-linear

hyperbolic conservation laws in several space dimensions are then discussed in section 3. In section 4,

we consider the LDG space discretization for elliptic equations with emphasis on the discretization of the

Laplacian and the Stokes operators and, in section 5, we consider the RKDG nlethods for convection-diffusion

t)roblems. In section 6, we expand the RKDG methods to Hamilton-,lacobi and non-linear second-order

parabolic equations. We end in section 7 by describing ongoing work and several important open problems.

2. Scalar hyperbolic conservation laws in one space dimension. In this section, we introduce

and study the RKDG method for non-linear hyperbolic conservation laws. Following the traditional path in

this field, we begin by (:onsidering the simple model Cauchy problem for tile scalar non-linear conservation

law

ut+f(u)_.=O, in (0, 1) x (0, T), u(x,O)=uo(x), V x E (0,1), (2.1)

with periodic boundary conditions. All the main ideas of the devising of the RKDG method are discussed

in this section.

As is well known, tile main ditficulty of a numerical solution to (2.1) is the appearance of shocks even if

the initial condition u0(x) is smooth. A good scheme for (2.1) would hopefully have the following properties:

• It is locally conservative.

• It is high order accurate in smooth regions of the solution.

• It has sharp and monotone (non-oscillatory) shock transitions.

• The numerical solution should be self-similar, that is, it should remain invariant when both space x

and time t are sealed by the same constant. Notice that this self-similarity is an important property

held by the exact solution of (2.1) and should be maintained by the numerical solution whenever

possible.

We will discuss in detail RKDG method in terms of these requirements.

We start by considering the DG space diseretization. Next, we introduce the special RK time dis-

cretization and show how its structure allows us to guarant_ the stability of tile whole method provided

10



the stat)ility of a generic intermediate step holds. Then, we study carefully tile stability of the intermediate

step and construct a generalized slope limiter that enforces it without degrading the high-order accuracy of

the method. We then put all these elements together, show that the RKDG method is indeed stal)le and

display several numerical results illustrating key features of the method. We end this section by extending

the method to the t)ounded domain case.

2.1. The DG space discretization. We seek an approximation uh whose restriction to each element

Ij = (Xj_l/.2,X.i+l/2) is, for each value of the time variable an element of the local space li(Ij); typically

Ll(Ij) is the space of polynomials of degree at most k _> 0. A reasonable way to define the initial data ut, (', 0)

on the element I9 is to take the L2-project.ion of u0 on the local space Ll(Ij), that is, for all vh E lt(Ij),

is Uh(X'O) Vh(X)dx=il uo(X) Vh(x)dx. (2.2)
j J

To determine the approximate solution for t > 0, we enforce the non-linear conservation law element-by-

elenient by recalls of a Galerkin method. Thus, on eacii interval I i -- (xj-l/2,x/+l/2), we require that, for

all vh E/d(Ij),

(uh(x,t)),vh(x)dx-- _ f(uh(x,t))(v,,(x))_dx + ](u,,(.,t))vh *_+_/'-' =0, (2.3)
2 ' J IXJ--L/2

where f(uh) is the numerical flux. Note that Uh is a well defined function since there are as many equations

per element as unknowns. The integral

fl f(uh(x,t)) (vh(x)), dx,
J

could either be computed exactly or approximately hy using suitable immerical quadratures or other methods;

we will come back to this point in section 3 when we discuss the multi-dimensional case. Thus, to complete

the DG space discretization, we only have to define tile numerical flux.

There are two main ideas in this crucial step. The first is to make the numerical flux depend only on

the two values of tile approximate solution uh at tile discontinuities, that is,

f_'(ltt, )(X j-t-t/2) ---- }(?'h (X;+l/2) , ?lh(X_+l/2));

this is computationally very convenient since we have a single recipe for the mapping (a,b) _ ](a, b)

regardless of the form of the local spaces U(Ij). Of course, we must make sure that the numerical flux is

consistent with the non-linearity f it approximates and so we require that ](a, a) = f(a), The second idea

is to pick the numerical flux in such a way that when the approximate solution uh is t)ieeewise-constant,

the DG space discretization gives rise to a monotone finite volume scheme. The motivation for this is that,

although only first-order accurate inonotone schemes are known to be stable and convergent to the exact

solution; see the 1976 papers by Harten, Hyman and Lax [62] and by Kuznetsov [74] and the 1980 work

by Crandall and Majda [48]. This is achieved by simply requiring that a _ ](a, .) be non-decreasing and

b _-_ ](., b) be non-increasing. The main examples of numerical fluxes satisfying the above properties are the

following:

(i) The Godunov flux:

f
fC;(a, b) = _min,_<,,<b

f(u),

tnlaxb<_<, f(l'),

ifa<b,

otherwise.

ll



(ii)The Engquist-Osher flux:

/0 /ofE°(a, b) = min(f'(s), O) ds + max(f'(._), O) ds + f(O);

(iii) The Lax-Friedrichs flux:

1
fLl:(a, b) = _ If(a) + f(b) - C (b - a)],

This completes the definition of the DG space approximation.

C = max "'"it'/sji.
inf u°(xJ_<s_<sup u°(x}

Several comments ahout this DG space discretization are in order:

• The class of monotone schemes is one of the great achievements of the development of numerical

schemes for non-linear scalar hyperbolic conservation laws. The stability and convergence properties of these

schemes are corner stones for the construction of high-resolutio,_ finite volume and fi,fite difference schemes.

The same thing can be said about DG space discretizations which, as we have seen, try to capture those

properties by incorporating their numerical fluxes.

• In the linear case f(u) = c u, all the above mmmrical fluxes coincide with the so-called upwind numerical

flux, namely,

fca ifc _> 0,

(eb if c < 0.

The first DG method was introduced in 1973 by Reed and Hill [90] for a linear equation modeling transport of

neutrons; they used th(, upwind numerical flux, even though the concept of monotone schemes and numerical

fluxes had not been introduced yet.

• Tim first theoretical analysis of this DG method applied to linear equations was carried out in 1974

by LeSaint and Raviart [77] who proved that, when arbitrary triangulation and polynomials of degree k are

used, the L_-error is of order k; they also proved that for Cartesian grids and tensor product polynomials of

degree k, the L='-error is of order k + 1. In 1986, Johnson and Pitl/iranta [71] improved to k + 1/2 the order

of convergence obtained by LeSaint and Raviart and in 1991, Peterson [89] showed that this order is sharp

since it can actually be numerically achieved. Finally, in 1988, Richter [91] proved that the order of k + 1

can I)c ot)tained for polynonfials of degree k if the triangles form a uniform triangulation. These results show

that the DG space discretization can be made as accurate as desired by simply suitably choosing the degree

of the approximating polynomials.

• The non-linear case is much more difficult to study. In fact, it was only in 1982, after the introduction

of the monotone schemes, that Chavent and Salzano [30] used for the first time a DG space discretization for

a non-linear hyperbolic conservation law in the framework of oil recovery prol)lems. Moreover, so far there

is no convergence analysis of the DG space discretization for non-linear scalar conservation laws with non-

smooth solutions except for the piecewise-constant ease. Notice that the DG space discretization is linear

(i.e. the scheme is linear for linear PDEs), hence it is expected to be oscillatory for problems with shocks

except for the piecewise-constant case (the well known "Godunov Theorem", e.g. [78]). However, comparing

with other high order linear schemes such ms finite difference and finite volume schemes, the method of lines

version of the DG space discretization (and also certain implicit time discretization of it, such as I)ackwar(t

Euler or Crank-Nicholson) satisfies a remarkably stronger provable stability property: a local (:ell entropy

inequality for the square entropy as proven by Jiang and Shu in 1994 [68]. This result is valid for any order

of a(:curacy and any triangulation in ally spatial dimensions. It trivially implies a L 2 norm non-increasing
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with time for the numerical solution and enforces any linfit solution to be the correct entropy solution when

f(u) is convex. The only comparable result for finite difference or finite volmne schemes is for ore' space

dimension, second order accurate only, nonlinear schemes. However, unlike' for the linear case, numerical

evidence suggests that the DG method with explicit time stepping might be unstable in the general case

with strong shocks.

• For non-linear problems, the best choice of numerical flux is the Godunov flux f(; since it is well-

known that this is the numerical flux that produces the smallest mnount of artificial viscosity. The local

Lax-Friedrichs flux

_'LLF, b) = 1
j ta, _ If(a) + f(b) - C(b - a)], C = inax [f'(s)[,

min(a,b)<s<max(a,b)

produces more artificial viscosity than the Godunov flux, but their performances are remarkably similar.

Of course, if f is too complicated, we <:an always use the simple Lax-Friedrichs flux. Nuinerical experience

suggests that as the degree k of the approximate solution increases, the choice of the numerical flux does not

have a significant impact on the quality of the approxiinations.

• In the special but important case in which the loca[ space b/(/i) is taken to be the space of polynomials

of degree k, the system of <)rdinary differential equations takes a particularly simple form if we choose the

Legendre polynomials Pl as basis functions because we can exploit their Le-orthogonality, namely,

f'
to obtain a diagonal mass matrix. Indeed, if, for z C I/, we express our approximate solution 'ah as follows:

k

ut,(x,t) = Z u_(z), _(x) = Pt(2 (x - xj)/Aj), '._kj= xj+,/., - xj-,/2,
t=O

the initial condition (2.2) becomes

u_(O)- 2t'+l_ uo(x)_(x)dx,
-_j j

for t = 0 .... k, and the weak fornmlation (2.3) takes the following simple form:

_xj _ 1/'., /

for _ O. k; moreover, note that J '= ..., c2_(xj+1/2) = Pc(l) = 1 and that _2_(xj-1/.2) = Pt(-1) = (-1) t.

• In the general case, local mass matrix can be easily inverted, by means of a symbolic nmnipulator, for

example, since its order is equal to the dimension of the local spaces. _,_ thus can always obtain a system

of ordinary differential equations for the degrees of freedom that we can write as follows:

d

d-_ Uh = Lh(Uh), ill (0, T), Uh(t = O) = ]PhUo,

where Fh denotes the L2-projection amt the function Lh(Uh) is_ of course, the approximation to -f(uL.

provided by the DG-space discretization.

2.2. The RK time discretizatlon. We diseretize in time our system of ordinary differential equations

by using the following IRK method:
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(O) n.
1. Set 'u b = _t h,

2. For i = 1, .... KI compute the intermediate flmctions:

i-l

(_ il b ]
1=0

3. Set U 1l+1 = U_,h

which is required to satisfy" the following conditions:

(i) If dil# 0 then c_il ¢ 0,

(ii) ail> 0,

(iii) i-1Gt=o air = 1.

We need to stress the following features of tiffs special class of RK methods:

• Note that. the first property allows us to express the RK lnethod in terms of the functions u,iht.

Together with the two other prot)erties it ensures the distinctive feature of these RK methods which is that

their stat)ility follows from the stability of the mapping u(/) _ w_[. Indeed, if we assulne that, for soine

arbitrary semi-,,orm I" [, we have that Iwih'[ < tt_h , then

i 1

U{hi) _-- Z{_il,lb, ihl _

I=0

i-1

I=0

i--i

-<Eo.t4" ,
I=0

< max tt_I)
--041<i--1

by the positivity property (ii),

by the stability assumption,

by the consistency property (iii).

It is clear now that that the inequality t u_ I -< ]I?hu0 I, Vn, > 0, follows fronl the above inequality by a

simple induction argument.

• This elegant and simple class of RK methods was identified in 1988 by Shu [97] in the framework

of finite difference methods for non-linear hyperbolic conservation laws and was called the Total Variation

Diminishing (TVD) RK time discretizations because the total variation was used as the semi-norm I" 1- The

TVD-RK methods were flmher developed by Shu and Osher in 1988 [99] and in 1989 [100] for the efficient

implementation of the high-resolutioil essentially non-oscillatory (ENO) schemes for hyperbolic conservation

laws. In 1998, Gottlieb and Shu [56] carried out an exhaustive study of these nmthods. In 2000, Gottlieb,

Shu and Tadmor [57] reviewed this class of time discretizations, with new results for linear problems, and

renamed it as "strong stability preserving", which seems closer to the spirit of the method. Some of the RK

methods in this class are displayed in the Table 2.1.

• Note that these RK nmthods are extremely simple to code since only a single routine for Lh(uh) needs

to be written. Moreover, the evaluation of Lh(uh) (:an be efficiently done in parallel not only because the

mass matrix can always be taken to be the identity but because when computing the restriction of Lh (uh)

to the element K, only information of uh of the neighbors sharing edges (in 2D) or faces (in 3D) with K

is needed. This remains true regardless of the degree of the polynomial approximation and the accuracy in

time of the RK method.
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TABLE9.1

TVD-RK time discretization parameters.

order o'il .3il max{/_it �all }

2 11

1 1

2 '2

1

3 1

,1 ,1

1025 .g

1
1

0 7

1

1
oa

O0

• It is essential to carry out avon Neumann stability analysis of the method for the linear case f(u) = c u

in order to know for what values of tile number CFLL 2, tile condition

Icl`At
<_ CFLL=,

ensures its L2-stability. This condition has to be respected even for non-linear fimctions f since only under

this condition the round-off errors are not amplified.

For example, for DG diseretizations using polynomials of degree k and a k + 1 stage RK method of order

k + 1 (which give rise to an (k + 1)-th order accurate method), we can take in practice

1

CFLL= = _--_+ 1"

Indeed, this can be trivially proven for k = 0 and was proven for k = 1 in [44]. Moreover, for k _> 2, the

mmlber 1 is less than 5% smaller than numerically-obtained estimates of CFLL_ In Table 2.2. we display

these CFLIy numbers for a wide variety of time and space discretizations. The symbol '*' indicates that the

method is unstable when the ratio At/Ax is held constant, hi such a case, the nlethod is typically stable

for 'At of the order of (Ax) 1+-_ for some _ > 0; for example e = 1/2 for the forward Euler method and

polynomials of degree one [29].

• Finally, let us consider the issue of the stability of the intermediate mapping U(h/__+ w][, which is

nothing but a simple Euler forward step applied to the DG space discretization. That suet1 a step could be

stable is certainly not evident. In fact, in 1989, Chavent and Cockburn [29] used a DG space discretization

with piecewise-linear functions and discretized it in time by using the forward Euler scheme. For the linear

case f(u) = c u, they proved that a standard yon Neumann analysis shows that the method is unconditionally

_,il L",mstable. This implies that all the mappings u{j_) _+, 'h are unstable in as soon as polynomials of degree

bigger than or equal to one are used (see Cockburn and Shu [44]), even though the complete RKDG nmthod

might be L2-stable.

The abow_ arguments indicate that a weaker measure of stability has to be used for the mapping u_*) _-_

u,_[ to be stable. The fact that monotone schemes are obtained when piecewise-constant approximations are

taken suggests that semi-norms of the local means of the approximate solution could be a good candidate

for achieving the sought stability. As we show next, this turns out to be the case.
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TABLE2.2
The ("FLL:z numbers for polynomials of degree k and RK methods of order v.

k 0 1 2 3 4 5 6 7 8

v = 1 1.000 * * * * * * * *

v=2 1.000 0.333 * * * * * * *

v = 3 1.256 0.409 0.209 0.130 0.089 0.066 0.051 0.040 0.033

v = 4 1.392 0.464 0.235 0.145 0.100 0.073 0.056 0.045 0.037

v = 5 1.608 0.534 0.271 0.167 0.115 0.085 0.065 0.052 0.042

v = 6 1.776 0.592 0.300 0.185 0.127 0.093 0.072 0.057 0.047

u = 7 1.977 0.659 0.333 0.206 0.142 0.104 0.080 0.064 0.052

v = 8 2.156 0.718 0.364 0.225 0.154 0.114 0.087 0.070 0.057

u = 9 2.350 0.783 0.396 0.245 0.168 0.124 0.095 0.076 0.062

v = 10 2.534 0.844 0.428 0.264 0.182 0.134 0.103 0.082 0.067

v = 11 2.725 0.908 0.460 0.284 0.195 0.144 0.111 0.088 0.072

u = 12 2.911 0.970 0.491 0.303 0.209 0.153 0.118 0.094 0.077

2.3. The stability of the step uh _-+ Wh : Uh + 6 Lh(lZh). Let us denote by _j the mean of uh on the

interval Ij. If we set Vh -- 1 in the equation (2.3), we obtain,

+(](u,+,., =o,(_),

wtlere u j+,�. 2 denotes the limit from the left and u++1/2 the limit from the right. This shows that if we set

Wh equal to the Euh,r forward step uh + (f Lh(uh), we obtain

('_Tj -- _j )/(_-_ (f(11;+1/2,,1;+,/2) -- f(11;_1/2,11_1/2)) //'_j = O. (2.4)

When the approximate solution is piecewise-constant, we obtain a monotone scheme for small enough values

of l ef I and, as a (:onsequence, we do have that the scheme is TVD, that is, that

I_h ITS'(0,*)_ I_h [TV{0,1),

where

_<j<_N

is the total variation of the local means. For general approximate solutions, we get an analogous result that

tells us when the scheme is total variation diminishing in the means (TVDM) of the approximate solution

by using the following Lemma due to Harten [61].

PROPOSITION 2.1 (Harten's Lenuna). If the scheme (2.4) can be written into the form

Wj = _j "4- Cj_i_l/2 (_j-t-I - _j) - Dj-1/2 (iTj - _j-l)

with Cj+l/., and Dj_I/2 being arbitrary nonlinear functions of _j, _j+l and Uf+l/2 satisfyin9

(2.5)

Cj+l/2 > O, Dj+I/2 >_ O, Cj+l/2 -b Dj+t/2 <_ 1, (2.6)
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then it is TVDM, namely

j_h [TVIO,_I<--I_h J_cV(o,_l"

Tile proof follows easily when we take a forward difference on both sides of (2.5), sum over j and group

terms oil the right hand side taking into consideration (2.6).

In fact, it is easy to rewrite (2.4) in the f()rm (2.5) with

A

= j-U'2)) (2.7)
c,+,j. -6 ( -/(,,;+,j,,o+

\ uj + l - Kj '

Dj_I/2 = 6 f('uf+l/'2" J------- . (2.8)
;'_j _ r_j_ 1

Thus, the coefficients Cj+W2 and D j-i�2 are non-negative if and only if the following sign conditions are

satisfied

sign (u++,/, - ,,+_,/2) = sign (_-j+l -- 'Uj);

sign (u_+j/, - uf_l/2) = sign (_;- uj-I ),

by the monotonicity of the numerical flux f. Once these two conditions are satisfied, the third condition in

(2.6) becomes a simple restriction on the size of the parameter 6.

Since the DG space discretization method does not provide an approximate sohltion autoxnatically

satisfying the above sign conditions, it is necessary to enforce them by means of what will be called a

generalized slope limiter, AIIh.

2.4. The generalized slope llmiter. Next, we construct the operator AIIh; set uh = AIIhvh. We

begin by noting that for piecewise linear approximate solutions, that is,

Vhl5 = _j + (x - xj)v_,j,

van Leer [103, 104] introduced the following slope limiter in the construction of his MUSCL schemes:

uh]t3 = _j + (x -- :r_) m (v_,;, i_;+1 - vj v_ - t-_j-i ),
..kj ' Aj

where the rninmod functionm isdefinedas follows:

_min_<,,<._]a.]ifs = son(a,1)= sign(a,,)= sOn(a3),
m (al, a'2, a3) =

0 otherwise.

We use a less restrictive slope limiter, denoted by ,,ki1l, due to Osher [85], which is defined as follows:

.hi,, = _ + (x - x_)., (L,a.j, i._j/2 ' £'-'_ )'

which can be rewritten as follows:

uj+u. = v-j + m ( v;+u. - v_, v_ - vj__, v_+_- _) (2.9)

u+l/, = _j - m(_j - v + _j - _j-1, gj+l - _j). (2.10)j--i/''
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Fit:. 2.1. Example of slope limiters: The MUSCL limiter (left) and the less restrictive AII_, limiter (right). Displayed
arc thc local means of.uh (thick line), the linear fanction _th in the element of the middle: before limitin 9 (dotted line) and the

resulting function after limiting (solid line)."

A (:omparison between tile vau Leer's MUSCL slope limiter and tile slope limiter AII_ is displayed in Fig. 2.1.

For general functions vh, we can define a generalized slope limiter AIIh in a very simple way. To do

that, let us denote by _,]_the L"-projection of vh into the space of piecewise-linear functions. We then define

uh = AIIh(t,'h) on tile interval Ij, as follows:

(i) Compute uj+l/., and u+_l/.2 by using (2.9) and (2.10),

(ii) If uj+l/, e = vj+.,/2 and u +j-l/2 = V;-1/2 set uhJl_ = l'_hJl 5 ,

(iii) If not, take Uhlt_ equal to AII_(v_).

Let us discuss some imt)ortant points about this limiter:

• The above recipe is remarkably simt)le as it can be applied to any type of apt)roxirnate solution vh by

using the minmod funt:tion m at most three times t)er element.

• This generalized slope limiter can be efficiently parallelized since to compute it on the element lj, the

only information needed which is not associated with this element are the means on tile two neight)oring

elenlents.

* For this geueralized slope limiter, the sign conditions are satisfied for sinall enough values of 151. In

fact, we have the the following result.

PROPOSITION 2.2 (The TVDM property). Suppose that for j = 1,..., N

1(_1 ( '_(a'')IL'p -'[-+'_j+IIf("b) ILiP)/xj _<1/2. (2.11)

Then, if u,h = Aflhvh,

I_+, 17'_(0,t) < ]_h 17'V(0,_).

Proof. Since in our case, the coefficients Cj+1/2 and Dj_I/. 2 in (2.5) are given by equations (2.7) and

(2.8), we can clearly see condition (2.6) in Harten's Lemma is satisfied. This is a simple consequence of
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tilemonotonicityof theflux f, the CFL condition (2.11), and tile definition of tile limited quantities (2.9),

(2.10). []

• If the flmction t'h is linear, then uh = Vh. However, if the fimction vh is a parabola, we hax'e that

uh ¢ vh near tile critical point of vh. This is an indication that the high-order accuracy of the RKDG

method is maintained away fi'om critical points but might be lost near them; this is what actually takes

place in practice. Fortunately, it is possible to slightly modify our generalized slope limiter in such a way

that the degradation of the accuracy at local extrema is avoided. To achieve this, we follow Shu [96] and

modify the definition of the generalized slope linfiters by simply replacing the rnimnod function m by the

corrected minmod flmeti(m 7i7j defined as follows:

al if I._l _<M_5,n_j (al, a2, a3) = H_ (ill, , (t2, a3) otherwise,

where M is, of course, an upper bound of the absolute value of the second-order derivative of the solution

at local extrema. In the case of the non-linear eohservation laws under consideration, it is easy to see that,

if the iifitial data is piecewise C 2, we can take

M = Csup{l(uo)_x(y)[,y: (Uo)x(y) = 0},

where for a uniform mesh we could take C = 2/3; see [43]. Fortunately, in practice, the numerical results are

not very sensitive to the choice of this constant which can be taken fairly big without degrading the quality

of the results. For tile above modified generalized slope limiter, which we denoted by AIIt,,M, the TVDM

property of Proposition 2.2 does not hold anymore. Instead, the mapping uh _-_ u'j, has total variation that

can increase an amount proportional to Ax _= maxj Aj at each intermediate step.

PROPOSITION 2.3 (The TVBM property). Suppose that for j = 1,..., N

'5' ('f(a'')'LiP + 'f("b)'LiP) < I/2"Aj+,Aj -

Then, if uh = AIIh,MVh, then

IWh ]TV(0,1) --_ [_h [TV(0,1) q- CAIAx.

Note that the condition on (f is independent of tile form that the approximate solution has in space.

• Ideally, the parameter __I should be estimated solely by using the approximate solution. However, it

is difficult to achieve a recipe good for both smooth extrema and shocks. We should point out that this

TVB modification renders tile scheme non self similar, as tile spatial mesh size Aj explicitly appears in the

scheme and M certainly changes when x and t are both scaled by the same constant. However, in practical

calculations one observes that this modification takes very little effect near the shock, and allows the limiter

not to be enacted near smooth extrema. Thus the resulting scheme is basically the same as a self similar

TVDM scheme except for the recover)' of the full order of accuracy near smooth extrema. This issue brings

us to the generalized slope limiter devised in 1994 by Biswas, Devine and Flaherty [22] which does not require

any auxiliary parameter to be guessed. Unlike the generalized slope limiter we have presented, there is no

known stability property for it; however, it performs very well and can be used for adaptivity purposes.

• We have used the total variation of the local means to devise our generalized slope limiter but stability

in the L_-norm of the means is also enforced by this limiter; see [43] for details.

19



2.5. The non-linear stability of the RKDG method. Let us recall the comt)lete RKDG method:
0

1. Set u h -- iI_h,A1]_huO;

2. Forn=0 ..... L-l:

(a) Set • ¢,) = 'a_;a h

(b) For i = 1 ..... K; compute tim intermediate functions:

(c) Set ,,_+' = ,,#.

Ill") = AYIhM (Z _il W ,

\l=l)

For this method, we have the following stability result.

THEOaEM 2.4 (TVBM-stal)ility of the RKDG method).

CFL condition:

a. _xr' (If(_,')IL_,,+
nlax .....

it t_it Aj+l _

Their "tl]e ha'ue

I_ ]TV(o.1 <_ ] u()]'m'(o,J) + C M Q

u,_[ ='u(h tl + /?it At"Lh(ul/));
O_ il

Let each time step -_t" satisfil the following

I f(-,b)IL_,)/Xj -< 1/2.

Vn =O,...,L,

where LAx <_ Q.

Proof. From Proposition 2.3 with 6 = _/At" and the CFL condition (2.12), we have that

I<,' -< + c Max.
Tl'(0,1)

Now, we have that

since (tit _> 0,

by the above stability prol)erty,

i--I
since _-]4=0 (_it = 1,

_(t":) rl (o.l) = _-} a._[ rv(o,
I=0 1 j

i-- 1

I=0

i-!

I=0

< max _t )
-- O<l<i--1 TI'(O,1 )

\

+ C MAx)

+ C M Ax,

and, by induction,

[u_ ITU¢O,l) _ I IFhuo Izv(o,t) + C M LAx _ luo 17'V(O,1) + C J_l Q,

(2.12)

since IFh is the L2-projection. This completes the proof. []

The above stability result, and its remarkably simple proof, require several comments:

• Note that for the linear case f(u) = cu, the CFL condition (2.12) becomes

Icl _t 1
< CFLTv =- 2 max _-_"

C_il

In Table 2.3, we display these CFL numbers for the RKDG obtained by using polynomials of degree k and

the methods of order k + 1 considered in the Table 2.1 and compare them with the CFL numbers needed
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for L_-stability. We Call see that tile restriction of tile time step imposed by tile TVBM l)roperty is much

weaker than that required to achieve L2-stability. However, it is the condition for L 2 stability the one to be

respected; otherwise, the round-off errors would get amplified and tile high-order accuracy of the method

wouht degenerate even though the RKDG meti_od rexnains TVBM-stable.

TABLE2.3

CFL number._ lot RKI)(; methods o/ order k + 1.

k 0 1 2

CFLTv 1 1/2 1/2

CFLL: 1 1/3 1/5

• In the proof of the above result, it can be clearly seen how the DG space discretization, the RK time

discretization and the generalized slope limiter are inter-twined just in the right way to achieve non-linear

stability. This is why we must emphasize that although the DG space discretization of this method is an

essential distinctive feature, tile other two ingredients are of no less relevance.

• Indeed, both the DG space discretization and the slope limiter were known to Chavent and Cockburn

[29] who used piecewise-linear approxinlations and the forward Euler time marching scheme and ohtained a

stable first-order accurate in time method. It was the use of the special RK time discretization tilat really

allowed the RKDG method to beconle a stable and high-order accurate in time nlethod. We nmst say also

that there are anecdotal reports of other time discretizations that seem to work .just fine, the fact remains

that only with this special (:lass of TVD-RK methods, tile non-linear stability of the inethod can actually

be proven.

• Let us also stress the fact that the generalized slope limiter is also an essential ingredient of the

method without which its stability cannot be guaranteed. Although our nunlerical experience indicates that

second-order RKDG methods using piecewise linear approximations seem to remain stable, this is certainly

not the case for higher order RKDG methods. Also, if it is known before iland that the exact solution is

smooth, the generalized slope limiters are not necessary. For a short essay in which the role of the generalized

slope limiter is argued to be indispensable for transient non-linear problems, see the work by Cockt)urn [aa];
in it, it is shown that the liiniter plays the role of the so-called shock-capturing terms used in DG and

streamline-diffusion methods.

• It is interesting to note that totally independently of the just described development of the RKDG

methods, other authors have studied methods using DG space discretizations and RK time discretizations.

Indeed, in 1989, Allnlaras [6] introduced a DG method for the transient and stead3' Euler equations of gas

dynalnics an earlier version of which appeared in the 1987 paper by Alhnaras and Giles [7]. He used piecewise-

linear functions in space and a three-stage second-order Runge-Kutta time stepping method. Later, in 1992,

Halt [58] extended Alhnaras' work to higher degree potynonlials and to general unstructured grids in two-

and three-space dimensions. His numerical test cases include steady state test problems like the Ringleb

flow, 2-D airfoils and the 3-D Onera M6 wing; see also the 1991 and 1992 papers I)y Halt and Agarwall [59]

and [60], respectively.

• It is not difficult to use Theorem 2.4 to conclude, by using a discrete version of the Ascoli-Arzel_i

theorenl, that from tile sequence { uh }_>0, it. is possible to extract a subsequence strongly converging in

L °c (0, T; L l (0, 1)) to a linfit u*. That this limit is a weak solution of the non-linear conservation law can be

easily shown but, although there is ample numerical evidence that suggests that a* is actually the entropy
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solution,this fact remainsa verychallengingtheoreticalopenproblem.Therearenoothersignificant
theoreticalresultsaboutRKDGmethods.However,theoreticalresultsconcerningotherDGmethodsfor
the non-linearscalarhyperbolicconservationlawsarethe1995convergenceresultof Jaffrd, Johnson and

Szepessy [67] for the so-called shock-capturing DG methods, and the 1996 a posteriori and a priori error

estimates of Gremaud and Cockburn [36] for the same methods. These methods can be t)roven convergent,

but they are non self-sinfilar in an essential way, that is, mesh size Ax-dependent terms are responsible for

the control of oscillations near shocks, hence their practical value is more linfited.

2.6. Computational results. In this section, we display the l)erformance of the RKDG schemes in

two simple but typical test problems; the AIIh,M generalized slope limiter is used.

The first test is the traslsport equation in (0, 2:r) x (0, T) with periodic boundary conditions:

{;forTr/2<x<3rc/2,
ut + u_ = O, u(x, O) =

otherwise.

Our purpose is to show that (i) when the constant 51 = 0, the scheme becomes TVDM fox"all polynomial

degree approximations, and that (ii) when M increases, the artifcial diffusion induced by the limiter decreases

as the polynomial degree increases. This can actually be seen ifl Fig. 2.2; see also Fig. 1.2 in section 1. Note

that for polynomials of degree 6 the contact discontinuity is always captured with less than five elements,

for an)' value of .hi, even at T = 1007r!

Now, we consider the standard Burgers equation in (0, 1) x (0, T) with periodic boundary conditions:

1 1
ut + (u2/2)_ = 0, u(x,0) = uo(x) = _ + _ sin(_r(2x - 1)).

Our purpose is to show that (i) when the constant M is properly chosen, the RKDG method using

polynomials of degree k is is order k + 1 in the uniform norm away from the discontinuities, that (ii) the

appearance of discontinuities does not destroy the high-order accuracy of the method away of them, that

(iii) it is computationally more efficient to use high-degree polynomial approximations, and that (iv) shocks

are captured in a few elelnents without production of spurious oscillations

The exact solution is sxnooth at T = .05 and has a well developed shock at T = 0.4. In Tables 2.4

and 2.5, we show the effect of the parameter .hi on the quality of the approximation for k = 1 and k = 2,

respectively. It can be seen that when the TVDM generalized slope limiter is used, i.e., when we take .hi = 0,

there is degradation of the accuracy of the scheme, whereas when the TVBM generalized slope liruiter is

used with a properly chosen constant .hi, i.e., when M = 20 _> 2 7r2, the scheme is uniformly high order.

In Table 2.6, we display the history of convergence of the RKDG method with M = 20 away from

the discontinuity. V_ see that, as claimed, the presence of the shock does not degrade the accuracy of the

inethod away from it.

Next, we compare the efficiency of the RKDG schemes for k = 1 and k = 2 for the case M = 20 and

T = 0.05; the ef[iciexicy of a method is the inverse of the product of the Ll-error times the computational

cost (CPU). The results, obtained on a Pentium II PC are displayed in Table 2.7. We can see that the

efficiency of the RKDG scheme with quadratic polynomials is several times bigger than that of the RKDG

scheme with linear polynomials even for very small values of Ax. We (:an also see that. the efficiency ratio

is proportional to (Ax) -1, which is expected fox" smooth solutions. This indicates that it. is indeed more

efficient to work with RKDG methods using polynomials of higher degree.

Finally, we have shown in Fig. 1.1 in section 1 that when shocks are present, they can be captured in

a few elements; in this case, the only shock is captured in essentially two elements, as is expected of any
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FIG. 2.2. Transport equation: Comparison of the exact and the RKDG solutions at 7' = ]O0_r with second order (p1, left)

and seventh order (P(;, right) RKDG methods with 40 elements. Exact solution (solid line) and numerical solution (dashed

line and symbols, one point per element). The auxiliary constant AI is 0 (top), l0 (middle), and 50 (bottom).

high-resolution method for strictly convex non-linearities. Note also that it is clear that the al)proxilnation

using quadratic elements is superior to tile approxilnation using linear elements. V_ also illustrate in Fig. 2.3

how the schemes follow a shock when it goes through a single elelnent.

2.7. Extension to bounded domains. In all this section, we have only considered periodic t)oundary

conditions. To extend our results to the bounded domain ea.se, see the formulation of the corresponding
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TABLE2.4
Effectof the generalized slope limiter parameter M for k = 1 at T = 0.05.

L'(0, 1) L_(0, 1)

ill 1/Ax 105 • err(n" order 10 5 - error order

0 10

20

40

80

160

320

640

1280

1286.23

334.93 1.85

85.32 1.97

21.64 1.98

5.49 1.98

1.37 2.00

0.34 2.01

0.08 2.02

3491.79

1129.21 1.63

449.29 1.33

137.30 1.71

45.10 1.61

14.79 1.61

4.85 1.60

1.60 1.61

2O 10

20

40

80

160

320

640

1280

1073.58

277.38 1.95

71.92 1.95

18.77 1.94

4.79 1.97

1.21 1.99

0.30 2.00

0.08 2.00

2406.38

628.12 1.94

161.65 1.96

42.30 1.93

10.71 1.98

2.82 1.93

O.78 1.86

0.21 1.90

TABLE '2).5

Effect of the generalized slope limiter parameter M for k = 2 at 7' - 0.05.

L'(O, I) L_(O, I)

111 I/Ax 105 • err_n' order 105 • error order

0 10

20

40

80

2066.13 -

251.79 3.03

42.52 2.57

7.56 2.49

16910.05

3014.64 2.49

1032.53 1.55

336.62 1.61

2O 10

20

40

80

37.31 -

4.58 3.02

0.55 3.05

0.07 3.08

101.44

13.50 2.91

1.52 3.15

0.19 3.01

initial-boundary value problem by Bardos, LeRoux and N6d61ec [17], we proceed in three steps:

(i) To extend the DG st)ace discretization, we simply have to replace the numerical fluxes at the bound-

aries, llalllely,

f(uh(O-,t),uh(O+,t)) and f(uh(1-,t),uh(l+,t)),
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TABLE2.6
ttLstory of convergenc_ on _ = {.r : 13"- shock[ _ 0.1} for AI = 20 at T = 0.4.

LI(_]) L_'(_)

k 1/A:r 10 r' .error order 10 .5 .error order

1 10

20

40

80

160

320

640

1280

1477.16

155.67 3.25

38.35 2.02

9.70 1.98

2.44 1.99

0.61 1.99

0.15 2.00

0.04 2.00

17027.32

1088.55 3.97

247.35 2.14

65.30 1.92

17.35 1.91

4.48 1.95

1.14 1.98

0.29 1.99

10

20

40

8(1

786.36 .-

5.52 7.16

0.36 3.94

0.06 2.48

16413.79

86.01 7.58

15.49 2.47

0.54 4.84

TABLE 2.7

Ratio of eJJiciencies of th, e RKD(I method (k = 2)/(k = 1 ) for /_1 = 20 at T = {).OF).

L_(0, 1) L'_(O, I)

1/Ax efficiency ratio order effti(:iency ratio oMer

10

20

40

80

5.68

11.96 -1.07

25.83 -1.11

52.97 -1.04

4.69

31.02 -2.73

70.90 - 1.19

148.42 -1.07

by

f(a(t), Uh (0 + , t)) and ](Uh (1-, t), b(t)),

respectively, where a(t) and b(t) are the I)oundary data.

(ii) The TDV-RK time discretization has now to take into consideration the boundary data; see the

work by Shu [95] for details.

(iii) To extend the generalized slope limiter, we simply hax,e to define the quantities

-5o = 2 a(t) - -ul and UN+l = 2 b(t) - ux,

and proceed as usual.

This colnpletes our treatment of the RKDG method for one-(limensional scalar hyperbolic conservation

laws.

25



0.5

0.25

0.2 _

0.25

-0.2

I

I

I

I

o:
0.2

-02

FIG. 2.3. Comparison of the exact and the approximate solution_ _ obtained with AI = 20, ',.5,x = 1/40 as the shock passes

through one element. Exact solution (solid line), piecewise linear elements (dotted line) and piecewise quadratic elements

(dashed line). Top: T = 0.40, middle: 7' = 0.45, and bottom: T -- 0.50.

26



°

method t,o multi-dimensional systems:

ut + V-f (u) = 0,

.(x, 0) = _o(X),

Multi-dimensional hyperbolic systems. In this section, we consider the extension of the RKDG

in _) × (0, T), (3.1)

V x E _. (3.2)

For simplicity, we assume that _ is the d-dimensional unit cube, The RKDG method for nmlti-dimensional

systems has the same structure it has for one-dimensional scalar conservation laws; we only need to de-

scribe the DG-space discretization and the generalized slope limiter AHh. After doing that, we display the

performance of the method on the Euler equations of gas dynamics.

3.1. The discontinuous Galerkin space discretization. To discretize in space our multi-dimensional

system (3.1), we simply proceed component by component; thus, it is enough to show how to do this in the

case in which u is a scalar.

For this case, we seek an approximate solution uh whose restriction to the element K of the triangulation

Tj_ of f_ is, for each value of the time variable, in the local space Lt(K). Just as done in the one-dimensional

case, we take uh(0) - uh(.,0) on the element K to be the L2-projection of the data on/A(L'), that is, for all

vh e Z4(h'),

fK uh(O) vh dx = /, uo Vh dx.. (3.3)

We now determine the apt)roximate solution for t > 0 on each element K of our triangulation by imposing

that, for all vh E//(K),

where nK is the outward unit normal to tile boundary of K.

To complete the definition of the DG space discretization, it only remains to define the numerical flux

f'_'_a, This is in effect just a one dimensional flux we have discussed in the previous section, in the normal

direction of the edge. However,.to explain it clearly, we need to introduce some notation. For two adjaeent

elements K + and/_'- of the triangulation %, and a l)oint x of their conunon boundary at which the vectors

rta.± are well defined, we set.

u_ (x) = lim uh (x - s nK± ),
e$o

and (:all these values the traces of Uh from tile interior of K ±. Now, just like for the one-dimensional case

we take the numerical flux at x'to be soMy a function of the traces u_(x), that is,

I'_-_K-(Uh)(X) = f "nK-(u_(_'), U+h(X)),

and require that it be consistent, with the non-linearity f-nz,.-, which in this case amounts to ask that

f'_K- (a, a) = f(a) • nK-. Another criterion to pick our mlmerical fluxes is that when a piecewise-constant

approximation is taken, the DG space discretization should give rise to a monotone finite vohune scheme.

This is ensured if we ask that our numerical flux be conservative, that is, that

f _a-(u_(:r),,zh+(.v)) + f.-_K+(u+(x), u_(:r)) = O.

and that the mapping a _ f "_(_K- (a, ") be non-decreasing. The main examples of numerical fluxes satisfying

all the above requirements are the following:
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(i) The Godunt)v flux:

{

A c; Imin,<_,<_l, f" (u),
f. n (a,b) = i

(n,a_xb<,,<,, f .,_('_),

(ii) Tile Engquist-Osher flux:

EO fo b
f" n (a, b) =

(iii) The Lax-Friedrichs flux:

ifa _< b,

otherwise.

f0 _1
min(f' - n(s), O) ds + max(f' • u (.s), O) ds + f. n(O);

_Lr 1 C

f. ,_ (_, b) = _ (f(_) + y(b)). _ - -ff(t, - a),

where C = nlaxin f uo(x)<s<sup uo(x) Ill. ff(s)j.

In other words, to define the multi-dimensional DG discretization, we can use simple one-dimensional nu-

merical fluxes.

Before discussing the DG discretization under consideration, we introduce a notation which is a mixture

of the traditional notation use(t in hyt)erl)olic conservatioll laws and that proposed in [25] for purely elliptic

problems. Thus, we define the mean vah,es {-} and juinps [.] by

1 +

_LF
we realize that we have the identity f • n = fLF • '/1 where

C
fLr(_h,"+) = {1(_',,)}- -filed"

The Godunov and the Engquist-Osher numerical fluxes do not satisfy a similar identity.

Next, we discuss a few important points concerning this discretization:

* Just like in the one dimensional case, the mass matrix is block-diagonal; the block associated with

the element K is a square matrix of order equal to the dimension of the local space L/(K) and hence can

I)e easily inverted. Moreover, for a variety of elements and spaces b/(K), a t)asis can be found which is

orthonormal in L 2. This is the case, for example, of rectangles and tensor product polynomials, in which

case the orthonormal basis is a properly scaled tensor product of Legendre polynomials. Another remarkable

example is that of simplexes and polynomials of a given total degree, case for which the so-called Dubiner

basis is the orthonormal basis; see Dubiner [53], the work t)y Karniadakis and Sherwin [72] and Warburton

[105], and the recent implementation by Aizinger, Dawson, Cockburn and Castillo [5].

Thus, after performing the DG space discretization, and just like for the one-dimensional case, the

resulting equations can be rewritten in ODE form as _ uh = Lh (Uh) where Lh (Uh) denotes the approximation

to -V- f(u) provided by the DG method.

• In practice, the integraJs appearing in the weak formulation (3.4) need to be approximated by quadra-

ture rules. It was proven in [37] that

IILh(u) + V. f(u)llL_lJ,) __C hk+l [f(U)Iwk+:._(K),

if the quadrature rules over each of the faces of the border of the element K are exact for polynomials of

degree 2k+ 1, and if the one over the element is exact for polynomials of degree 2k. In fact, these requirements

28



are also necessary, as we have verified numerically; moreover, the Inethod is more sensitive to tile quality of

the quadrature rules used oil the boundary of the elements than t.o that used in their interior.

Finally, let us point out that a quadrature-free version of the method was devised by Atkins and Shu

[12] which results in a very efficient method for linear problems and certain nonlinear problems such as Euler

equations of gas dynanfies where the nonlinearity in the flux is mainly low order polynonfials and perhaps

one or two divisions of the components of the independent variable u.

• When dealing with multi-dimensional hyperholic systems, the local Lax-Friedrichs nuinerical flux is a

particularly convenient choice of numerical flux because it can he easily applied to any non-linear hyperbolic

system, it is simple to compute, and because it gives good results. This numerical flux is defined as follows.

First, note that for multi-dimensional systems, u is a vector-valued function and f(u) is a matrix whose rows

will be denoted by fj('u); as a consequence, fLLV is also a matrix whose j-th. row is given by

_LLF C

f) (Uh,U +) = {fj(Uh)} -- _-[(Uh)j],

•where C = C(K _) is the larger one of tile largest eigenvalue (in absolute value) of _° f(u±h ) " hi,'+. In

practice, one couht also determine C = C(K ±) to be the larger one of the largest eigenvalue (in absolute

value) of 0 -e_,,f(u,,.'_) "nK+ where _7_-_=are the means of the approximate solution Uh in tile elements K +.

• The DG space discretization can be applied to any' high-order hyperbolic equation by simply rewriting

it as a first, order system of equations. For example, the wave equation

tttt -- e2 /kit = O,

which is a second-order hyperbolic equation can be rewritten as follows:

U, + V- F(U) = O,

where,

(qi)q2

U = . , F(U) = - ri°
It

0

c "2ql c2 q2

)...... °

• • • c2 qd

The DG space discretization can now be easily' applied to this system.

• Let us finally point out that since the wave equation can also be rewritten as

the DG space discretization of tile hyt)erbolic system for U, call be rewritten in terms of (u, q) as follows:

Find (Uh, qh ) such that its restriction to the element K belongs to the local space L/(K) x lid(K) and is such

that, for all (vh,rh) ¢ li(K) x lid(K),

L £ "7' (.2 ,(uh)_ vh dx + c-qh • VVh dx - qh " n_ Vh ds = O.
K
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A

where the numerical fluxes 'ur_ and c2qr, can be easily written in terms of tile numerical flux F(Uh)'

example, the Lax-Friedrichs flux for /0(Uh) corresl>onds to

--'Uh = --{Uh}- _-_[qh], --c21qh = --c2{qh} - _[Uh],

where

For

1

1
{q/,} = _(q+ + q;), [qh] = q+ "ha': + q/ 'nK+.

We shall meet these nuznerical fluxes again when we deal with DG discretizations of purely elliptic equations

in the next section.

3.2. The generalized slope limiter -_,IIh. When we dealt with the scalar one dimensional conserva-

tion law. the role of the generalized slope limiter AIIh was to enforce the TVBM property of a typical Euler

forward time step. In the case of multi-dimensional scalar conservation laws, we cannot rely anymore in

the TVBM property of the Euler forward step because such a property hau_ not been proven for monotone

schemes in general meshes; it only has been proven for monotone schemes in non-uniform but Cartesian grids

in 1983 i,y Sanders [94]. We can, instead, rely on a local maximum principle. Indeed, in [37] Cockburn, Hou

and Shu constructed a generalized slope limiter that enforces a local maximum principle without degrading

the accuracy of the numerical scheme; this property holds for approximate solutions of arbitrary shapes and

quite general meshes. See also the limiters introduced and studied by Wierse [107].

After several years of Immerical experimentation, the authors found a very simple, practical and effectiw_

generalized slope limiter AIIh,M which gives very good numerical results; see [46]. Since, unfortunately, there

is no rigorous proof that the use of this lilniter does enforce the stability of the method, we shouht at least

provide the heuristics behind its construction. Let Vh be the function to which we are going to apply the

limiter and let Uh be the result; let also 'v_ be its LU-projection into the space of piecewise linear functions.

Inspired by the construction of the one-dimensional limiter described in section 2, we first construct a slope

limiter for piecewise linear flmctions, AII_,.M. Then we construct a limiter for general fimction as follows:

(i) Detect the spurious oscillations in Vh[_,',

(ii) If there is no spurious oscillation, set Uh[t," = Vh[K,

(iii) If not, take UhlK equal to AHI,,M,, _.

It remains now to decide how to 'detect the spurious oscillations'. To do that, we assume that spurious

oscillations are present in VhlK on the element K only if they are present in v_]h" and by this we mean that

v_ I*," # AHh.Mv_[K. Thus, our generalized slope limiter is defined on the element K as follows:

A,_I " 1 r(i) Compute rh[_ = nh.MVhl/_,

(ii) If r,,]_,- = v_lK, set u,,lK = vh[K,

(iii) If not. set uh[t, = rh[h.

It only remains to define the slope limiter AH_,,M. To construct it for triangular elements, we proceed a_s

follows. Consider the triangles in Fig. 3.1, where rnl is the mid-point of the edge on the boundary of K0

and bi denotes the barycenter of the triangle Ki for i = 0, 1, 2, 3. Since

$I/_1 -- bo = (_1 (bl - b0) + a2 (b2 - b0),

for solne nonnegatiw' coefficients t_, _.2 which depend only on ml and the geometry, we can write, for any

linear function Vh,

Vh(ml) -- Vh (bo) = Cq (Vb (b, ) -vh(bo)) + a2 (vh (b2 ) --Vh (bo) ),
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andsince

we have that

1 _ (bi),Vh, = II¢_-----[I, *'l, = vt,
i = 0,1,2,3

_'_h(lItl,I_o) _ I'h('lll) -- U/_'o = (}tl (_h'l --i'Y/_'o) + (_2 (Uh'2 -- I_'K'n) _ A_(lltl,I£o).

K3

K1

FIG. 3.1. Illustration of limiting.

Now, we are ready to describe tile slope limiting. Let us consider a t)iecewise linear function Vh, and let

ms, i = 1, 2, 3, be the three mid-points of the edges of the triangle Ko. We then Call write, for (x, y) E K0,

3 3

i= I i= 1

To compute AIIlvh, we first compute the quantities

A i : 7Ti( _h(?ni, Ko) , 12 Ag(mi, Ko) ),

where _ is the TVB modified minm, od function (without its third argument) and u is an auxiliary parameter

which we took equal to 2 in the one-dimensional case. Then, if }-_i:___tAi = 0, we simply set.

3

i=1

Note that if vh is a linear function, then i_h(mi, K0) = '-._u(ftti, 1£0) and Ai = iTh(me, K0) provided u > 1; in

this case we have AH_(vh) = vh. This ensures that there is no degradation of accuracy after the application

of the slope limiter away of critical points; when there are critical points, the suitable choice of the parameter

M, hidden in the definition of tile TVB modified minmod function, ensures the same effect.

If }--__i=1 Ai # 0, we eoml)ute

3 3

po,s"= Z max(0, Ai), ,,cg = Z max(O,-Ai),
i=1 i=I

31



and set

Then, we define

where

,,<q_0+ =rain 1, pos/, 0- =rain 1, neg/.

3

Anh v,, (x, :j) = vh,) + _ £_ _ (x, Y),
i=i

_i = 0+ max({), Ai) - O- max(O, -Ai).

For systems, limiting in the local characteristic variables gives remarkably superior results than doing it

conlponent-by-coxnponent. Thus, to limit the vector vh(mi, Ko) in the element K0, we proceed as billows:

• Find the inatrix R and its inverse R -I , which diagonalizes the Jacobian

mi - bo,1= f(iiKo) • im,i _ bol'

that is, R- 1,1 R = A, where A is a diagonal matrix containing the eigenvahms of .1. Notice that the

columns of R are the right, eigenvectors of J and the rows of R t are the left eigenvectors.

• Transform vh (mi, K0) and .5_(mi, Ko) t.o the characteristic fields. This is achieved by left multiply-

ing these vectors t)y R -l

• Apply the scalar limiter to each of the components of the transfl)rmed vectors.

• The result is transfilrmed back to the original space by multiplying R on ttleleft.

3.3. Numerical experiments. In what follows, we present some immerieal results that display the

performance of the inethod especially when applied to the Euler equations of gas dynamics. We show some

nuInerical experiments with two objectives in mind. The first is to show that the use of polynomials of high

degree is always t)eneficial. This is a well known fact that will be illustrated on the classical rotating hill test

t)roblem for scalar conservation laws. To show that this is also tile case tbr solutions that display discontinu-

ities, we consider the double-Mach reflection problem and show that the use of high degree polynomials not

only does not degrade the approximation of strong shocks but provides a better approximation to contact

discontinuities. The second objective is to show that to deal with singularities in the flow, we can use the

typical finite elenmnt approach of adaptive refinement. To show this, we consider the forward facing step

problem whose solution has a singularity right at the corner.

3.3.1. The rotating hill problem. We display some of the the nunmrical results reported in [5]. We

consider the "rotating hill" problem

ut - (2Try u)_ + (27rx u)v = 0,

with a 'Gaussian hill' as initial data. V_ use polynolnials of degree k on meshes of triangles. Given the

mesh i, the mesh i + 1 is obtained by dividing each triangle into four congruent triangles. In Fig. 3.2, we

compare the linear solution on mesh 4, the quadratic solution on mesh 3, the cubic solution on mesh 2 and

the quartie solution on mesh 1. All solutions are at T = 1, which represents one full rotation of the hill. We

have taken tile same temporal integration RK method and taken a small enough time step so that (k + 1)-th

order of accura('y in the L2-norln is achieved for k = 1 to k -- 6.
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In Fig. 3.3, we have plotted tile L2-error at. time T = 1 versus the CPU time for the four different meshes

described above and for polynomials of degree up to six. Each lille corresponds to a different mesh, with

the symbols on each line representing tile error for the six different approximating spaces. We easily observe

that exponential convergence is achieved and that it is always more efficient to use a coarser mesh with a

higher order polynolnial approximation.
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FiG. 3.2. Rotatin 9 hill problem. Comparison of different degree polynomials on different meshes.

3.3.2. The double-Mach reflection problem. The results we show next are from Cockburn and Shu

[46]; the discussion of their results is quoted ahnost verbatim. In Figs. 3.4 and 3.5, we display the history

of convergence of the density; we used squares and polynomials of degree one and two, respectively. Note

that the strong shocks are very well resolved with both pl and p2 elements and that there is a remarkable

improvement in the approximation of the density near the contacts when going from p1 elements to P_

elements.

Next, we argue that the use of higher degree polynomials is more efficient. To better appreciate the

difference between tile p1 and p2 results in these pictures, we show a "blowed up" t)ortion around the

double Mach region in Fig. 1.3 in section 1 and show one-dimensional cuts along the line y = 0.4 in Fig. 3.6.

1 has qualitatively the same resolution as p1 withIn Fig. 1.3, we can see that p2 with Ax = Ay = 2-4-5
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1

:Xx = Ay = l for the fine details of the complicated structure in this region, p2 with Ax = Ay = _64--g6,

gives a much better resolution for these structures than p1 with the same number of rectangles. Moreover,

from Fig. 3.6 (left column), we clearly see that the difference between the results obtained by using p1 and

pe on the same mesh, increases dramatically as the mesh size decreases. This indicates that the use of

polynomials of high degree might be beneficial for capturing the above mentioned structures. From Fig. 3.6

(right column), we see that the results obtained with P] are qualitatively similar to those obtained with P'>

in a coarser mesh; the similarity increases as the mesh size decreases. Tim conclusion here is that, if one is

interested in the above mentioned fine structures, then one can use the third order scheme p2 with only half

of the mesh points in each direction as in p1. This translates into a reduction of a factor of 8 in space-time

grid points for 2D time dependent problems, and will more than off-set the increase of cost per mesh point

and the smaller CFL number by using the higher order P'_ method. This saving will be even more significant

for 3D.

3.3.3. The forward-facing step problem. Again, the results we show next are from Cockburn and

Stm [46]; the discussion of their results is quoted ahnost verbatim. The flow of a gas past a forward facing

step is a prol)lem studied extensively in Woodward and Colella [108] and later by ninny others. The main

difficulty of this tests problem is the existence of a singularity in the solution located exactly at the corner

of the step. It is well known that this leads to an erroneous entropy layer at the downstream bottom wall,

as well as a spurious Mach stem at the bottom wall.

In Fig. 3.7, second order pl results using rectangle triangulation are shown, for a grid refinement study

using Ax=Ay 426, Ax=Ay= _,Ax= Ay= _ and Ax=Ay= 1= , _ as mesh sizes. V_ can clearly

see the improved resolution (especially at the upper slip line from the triple point) and decreased artifacts

caused t)y the corner, with increased mesh points. In Fig. 3.8, third order p2 results using the saine meshes

arP shown.
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Next, we show that this singularity can be treated by silnply refining the grid around the corner and

not by modi_" our scheme near the corner in any way, as suggested in [108] and done in many other papers.

We thus use our triangle code to locally refine near tile corner progressively; we use the meshes displayed

in Fig. 3.9. In Fig. 3.10, we plot the density obtained by the pl triangle code, with triangles (roughly the

resolution of Ax = Ay = _, except around the corner). We can see that with more triangles concentrated

near the corner, the artifacts gradually decrease. Results with p2 (:odes in Fig. 3.11 show a similar trend.

3.4. Concluding remarks. In this section, we have extended tile RKDG methods to multidimensional

systems. We have displayed the performance of the methods for tile Euler equations of gas dynamics. The

flexibility of the RKDG method to handle nontrivial geometries and to work with different elements has been

displayed. Moreover, it has been shown that the use of polynomials of high degree not only does not degrade

the resolution of strong shocks, but enhances the resolution of the contact discontinuities and renders the

scheme Inore efficient on smooth regions.

Next, we extend tile RKDG methods to convection-(lominated t)roblems. To do that, we start by

considering the ai)plication of the DG space discretization to ellil)tic operators.

4. The LDG discretization for elliptic problems. In this section, we consider the LDG space

discretization for second-order elliptic operators. This discretization technique is in tile same form as the

DG space discretization for nmlti-dimensional hyperbolic systems that takes into consideration the elliptic

nature of the operator for the choice of the numerical fluxes. We begin by considering the boundary value

t)roblem for the Laplace operator and by showing how to define the LDG discretization for this model elliptic

problem. Then, we consider a boundary value problem for the Stokes system and show how to discretize it

with an LDG method; here, our main purpose is to show how to deal with the incompressibility condition.

We end the section by briefly comparing the LDG methods with stabilized mixed methods and with interior

t)enalty methods.

4.1. The Laplacian. We begin by considering LDG methods for the classical model elliptic problem:

-Au = f in gt,

_t _--- gT) on F'D,

Ou

On gAr n on F,v,

where f_ is a bounded domain of It(d and n is the outward unit normal to its boundary r_ U F_,.

4.1.1. The LDG method. Just as we did for the wave equation, we rewrite our elliptic model problenl

as the following system of first-order equations:

q = Vu in [_,

-V.q= f in[l,

u = gT) on Fz),

q • n = g,< • n on F,_,.
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FIG. 3..1. Double Maeh retie.orion pTvblem. Second order P! results. Density p. 30 equally spaced contour lines from

p = 1.3965 to p ----22.682. Mesh refinement study, t_Yom top to bottom: Ax = Ay _ _ l 1 and l
• 6(} ' 120 ' 240 ' 4_O "

Then, a general DG discretization is obtained as follows. The approximate solution (qh, uh) on the element

h" is taken in the space Q(K) x L/(K) and is determined by imposing that for all (r, v) C Q(K) x tg(K),

/_.qh'rdx=-- fKuh V'rdx + foK _hr'nh'd.%
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FIG. 3.5. Double Mach reflection problem. Third order I_2 results. Density p. 30 equally spaced contour lines from

I I 1 and lp = 1.3965 to p = 22.682. Mesh refinement study. From top to bottom: A:r = '.h._)-- 6o, 12o, 24o, 4--_"

where ut, and qh are the numerical fluxes ut, and Oh" These are defined as follows. Inside tile domain Q, we

take

Oh = {qh} + C,,[u,,] + C,2[qt, ],

_ih = {Uh} -- C,.,.. [uh] + C'_2[qh],
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FIG. 3.7. Forward facing step problem. Second order" t "I results. Density p. 30 equally spaced contour lines from
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and on its boundary, we take

and

[

q"_:=/Jq2 - Cll( u+h - g_)n on Fv,

t9_, on Cv,

%/'it :--

't#._ -- C22(q h -- g.'v')" n

Oil F'D,

011 F_,¢.
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FIG. 3.8. Forwatvl facing step problem. Third order p2 results. Density p. 30 equally spaced contour lines from p =

0.090338 to p = 6.2365. Mesh refinement study. From top to bottom: Ax = Ay -- ' J 1 and
40 _ 80 _ 160 _ 320"

Several points have to be discussed about this method:

• Note how both the Dirichlet and Neumann boundary conditions are imposed through a suitable

definition of the numerical fluxes.

• Note that if Cll = 1/2, Cl2 = 0 and C2_ = 1/2, we recover the Lax-Friedrichs numerical flux that we

used to discretize in space the wave equation with the DG method. In the framework of the wave equation,

the role of the parameters C1 l and C2.,, commonly thought of a_s inducing an artificial viscosity, is to render

the method stable; in the elliptic case under consideration, they do have the same role. Moreover, for the
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FIG. 3.9. Forward ]acing ste.p problem. Detail o.f the triangulations associated with the diJ'ferent values o.f a. The parameter

cr is the ratio between the typical size of the triangles near the corner and that elsewhere.

method to be well defined, we must have that C_ > 0 and C22 _> 0; the parameter Cue = 0 can be arbitrary.

• The LDG method is a particular case of the al)ove general DG discretization technique for which the

auxiliary parameter C2_ is taken to be equal to zero. This reduces the stability of the LDG method but

allows us to conveniently eliminate the auxiliary variable q from the equations in an element-by-element

fashion; this local solvability is what gives the name to the LDG methods.

• The LDG method defines.a unique solution under very mild comt)atibility condition on the local spaces

U(K) and Q(K). In fact, it is enough to have that VU(K) C Q(K).

• When L/(K) is the space of polynomials of degree k > 1 on each element and Q(K) = Lid(K), Castillo,
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FIe.. 3.10. Forward facing step' problem. Second order P] results. Density p. 30 equally spaced contour lines from

p 0.090338 to p = 6.2365. 7_'iangle code. Progressive refinement near the corner.

Cockburn, Perugia and Sch6tzau [27] proved that tile rates of convergence of tile L2-norm of the error in

_t and q are of order k + 1 and k, respectively, when the parameter Cll is taken to be of order h-1 and

tile parameters C_2 are of order one. These orders of convergence were actually observed in the numerical

experiments carried out in [27] on both structured and unstructured triangulations.

• When the parameter Cll is taken to be of order one only, it was proved [27] that order of convergence

of u is k + 1/2 and that of q is k. However, no degradation in the order of convergence form k + 1 to

k + 1/2 was observed in the nuinerical experiments reported in [27]. Concerning this point, it is interesting

to recall that the order of convergence of u for the DG method for purely convective problems is k + 1/2;
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FIG. 3.11. _brward facing step problem. Third order p2 results. Density p. 3(1 equally spaced contour lines from

p : 0.090338 to p = 6.2365. Triangle code. Progressive refinement near the corner.

this was proven in 1986 by Johnson and Pitkaranta [71] and was numerically confirmed in 1991 by Peterson

[89]. Whether or not a similar phenonmnon is actually taking place for the LDG method in this elliptic case

remains to be investigated.

• In Cartesian grids, Cockburn, Kanschat, Perugia and SchStzau [38] proved that for a special choice of

numeric_d fluxes (for which Cll is of order one and I C12 • n I = 1/2), the orders of convergence are k + 1 and

k + 1/2 for the L2-norm of the error of u and q.

4.1.2. Numerical results for the LDG method. Next, we provide a couple of numerical experiments

from [38]. \r_ solve the model problem in an L-shaped domain with Dirichlet boundary conditions in two
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cases.

In the first case, the exact solution is a function u that belongs to HS(f_) only for s _< 5. We use five

meshes obtained as follows. Tile 0-th mesh is an unstructured mesh of 22 elements; then the j-th mesh is

obtained fl'om the (j - 1)-th by refining each triangle into four congruent triangles. In the j-th colunms

of Table 4.1, we display the orders of convergence for the L2-errors in u and in q estimated by using the

(j - 1)-th and the j-th meshes; we can see that we obtain the orders of convergence of rain{5, k + 1} and

rain{4, k}, respectively.

TABLE, 4.1

Orders of convergence for an 1t 5-solution on an L-shaped domain.

k L2-error in the gradient q

1

2

3

4

5

0.8494 10.8581 0.9148 0.9530

1.7966 1.8441 1.9136 1.9550

2.65951 2.8369 2.9260 2.9644

2.655913.7667 3.8908 3.9571

2.763013.7978 3.8723 3.8912

6

k

1

2

3

4

5

6

3.074213.9120 ! 4.0307 4.1347
L:-error in the potential u

2.0435 1.9542 1.9552 1.9714

3.0471 2.9694 2.9740 2.9844

4.0360 3.9693 3.9831 3.9916

5.0226 4.8793 4.9274 4.9528

5.9726 4.8779 4.8875 4.8739

6.3544 4.9983 5.0609 5.0898

In the second case, we take the following exact solution

u(r, O) = r _ sin ('_0), _ = 2/3,

and solve for the corresponding Dirichlet problem.

For conforming finite element methods, it has been shown that the orders of convergence in the H 1 and

•, 4 _ for all c > 0, respectively. The immerical results for the LDG method on theL 2 norms are a - c and ._ -

sequence of unstructured meshes described in the previous experiment are reported in Table 4.2. They show

that the orders of convergence are those of the conforming case.

4.2. The Stokes system. Next, we consider the Stokes system, that is,

-Au + Vp = f in _,

V • u = 0 in l_,

u = gv on OiL

where {_t is a bounded domain of IRd and the Dirichlet datum satisfies the usual comt)atibility condition

f_ gT_ • n ds = 0, where n is the outward unit normal to 0_.
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TABLE 4.2

Orders of convergence for a non-smooth solution on an L-shaped domain.

k

1

2

3

4

5

6

k

1

2

3

4

5

6

L2-error in the gradient q

0.7818 0.6298 0.6420 0.6513
0.7794 0.66621 0.6665111.6666

0.7362 0.6665 0.66661 0.6666

0.7139 0.6666 0.6666 L 0.6667

0.7016 0.6666 0.66661 0.6667

0.6941 0.6666, 0.6666 0.6667

L2-error in the potential u

1.6098] 1.5694] 1.5793[ 1.5760

1.56101 1.5383[ 1.50141 1.4639

1.50151 1.48101 1.44491 1.4137

1.47151 1.4543 L 1.4215 I 1.3950

1.45351 1.43831 1.40831 1.3849

1.44081 1.42771 1.399,8 I 1.3786

4.2.1. The LDG method. To defined an LDG method fl)r the Stokes system, we begin by rewriting

it as a first-order system,

ai = Vui in l_,

-V "ai + Oi p = fi in it,

V • u = 0 in it,

u = g,_ on OfL

l<i<d,

l<i<d,

where ui denotes the i-th component of the velocity u. Now, we discretize the above equations by using

the DG technique. We take the approxinmte solution (ah, uh,ph) on the element K in the space $(K) d x

LI(K) d x P(K) and we determine it by requesting that, for 1 _< i_< d, for all ('r, v, w) E S(K) xL/(K) x "P(K),

O'ih "VV--PhOi V) dx- t (_hi .nKv--phvnKi) ds = fivdx,IOK

-- ffKuh'Vqdx+ foh'"v'h'nKqds=O'

where the numerical fluxes are, on the interior of the domain,

a..i, = {u_h }- Cv2. [uih],

and, on the boundary,

_i h : 0"+ -- CII (//+ -- gV,i) n, U_,h = gV"i h i h

The numerical fluxes associated with the incompressibility constraint, Up,h and lob, are defined by using
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all analogous recit)e. In tile interior of 9t, we take

and on the boundary, we take

Up,h = {Uh} -- Dll [/oh] -- DI'_, [uh],

/_h = {Ph} + Die" [Ph],

This conq)letes tile definition of the LDG method h)r the Stokes system. Note that:

• Cockburn, Kanschat, SchStzau and Schwab [39] proved that the order of convergence of k is obtained

for the L2-norm of the error in p and ai, and k + 1 for the L'-'-norm of the velocity provided polynomials

of degree k are used to approximate the pressure p, the stresses _i, and the velocity u. These orders of

convergence were actually observed in their numerical experiments.

* If polynomials of degree k - 1 are used to approximate the pressure p and the stress tensor o'i, it was

proved [39] that the above mentioned orders of convergence remain invariant. However, this method is less

efficient than the one obtained by using same approximation spaces for all the variables.

4.2.2. Numerical results. Next, we show some of the nmnerical experiments in [39]. Consider the

Stokes system with l_ = (-1, 1) _ and take the right-hand side / and the Diriehlet boundary condition gz)

such that the exact solution is

ul (x, y) = -e _ (y cos y + sin y),

u._)(z',y) = e_ysiny,

p(x, y) = 2c _ sin y.

We use uniform triangulations made of squares. The efficiency of LDG methods obtained with several

combinations of local spaces is compared in Figs. 4.1 and 4.2. We can see that all these LDG discretizations

converge with the same order, as expected, and that, in most causes, it is more efficient to use the same local

approximating spaces for all quantities.

4.3. Relations with other methods. The LDG methods are closely related to interior penalty (IP)

methods and to stabilized nfixed methods. Next, we briefly discuss the connection between these methods;

we follow the discussion given in [39].

4.3.1. Interior penalty methods. Several IP methods were introduced and studied in the late 70's

and early 80's. Thus. we have the IP method studied by Babugka and Zlgtmal [14] in 1973 for fourth order

problems, by Douglas and Dupont [52] in 1976 for second order elliptic and parabolic problems, by Baker

[15] in 1977 also for fi)urth order problems, by Wheeler [106] in 1978 for second order elliptic problems, by

Douglas, Darlow, Kendall and Wheeler [51] in 1979 for non-linear hyperbolic equations, and by Arnold [9] in

1982 for linear and non-linear elliptic and parabolic problems. In [11], Arnold, Brezzi, Cockburn and Marini

showed that these IP methods for ellit)tic equations, the LDG method, and other DG methods introduced

only a few ),oars ago, like the method of Baumaml and Oden [21], the variations of the original method of

Bassi and Rebay [18] studied by Brezzi et al. [25], and the variations of the method of Baumann and Oden

introduced and studied by Rivi_re, Wheeler, and Girault [92], can all be recast in a unifying frame which

allows fi)r a better comparison and understanding of the relations between these methods. They showed

that all these DG methods can be completely determined t)y their numerical fluxes. Moreover, in [10], those
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authors refined their initial stu(ly and presented a nmch more comi)lete study of these methods as well as a

new miified error analysis.

Using an approach similar to the one introduced [ll], a general theory of DG methods could be con-

structed for the Stokes. Let us just I)oint out that here it is pertinent to distinguish between methods that

impose the incompressibility condition weakly, like the LDG method we have presented here and methods

that impose it pointwisely, like the 1990 metho(t of Baker, Jureidini and Karakashian [16] who use an IP

discretization technique to achieve that goal.

4.3.2. Stabilized mixed methods. Let us emphasize that for the LDG methods, the approximation

spaces for the velocity and the pressure (:an be chosen almost: arbitrarily; only a mild local condition has to

he satisfied. This is so because the LDG nmthods ('an be considered to be stabilized mixed methods; for a
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review of stat)ilized mixed methods, see the artiele by Franca, Hughes and Stenberg [55]. The LDG methods

are thus related to the mixed methods introduced in 1986/1987 by Hughes, Fram:a and Balestra [66, 65]

who used the jumps of tile pressures across boundary elements and residuals inside the elements to render

them stable. However, unlike these methods, the LDG uses discontinuous approximations to the velocity

and employs stabilization terlns which involve jumps across the element boundaries only. Variations of the

LDG methods we study here could be easily constructed which are closely related to the 'locally' stabilized

methods introduced and nulnerically studied in 1989 by Silvester and Kechkar [101] and then analyzed in

1992 by Kechkar and Silvester [73].

4.4. Concluding remarks. We have shown how to apply the LDG space discretization to second

order elliptic model operators and how this is in the same form as the DG space discretization for multi-

dimensional hyperbolic systems that takes into consideration the elliptic nature of the operator for the choice

of the numerical fluxes. We are now ready to continue our presentation of the RKDG inethod for convection-

dominated problems. However, we want to stress that the application of LDG methods to linear elasticity,

to the biharmonic equation, and to other elliptic problems as well as the study of the relation of the LDG

method to other finite element methods constitute topics that are being vigorously studied.

5. Convection-diffusion equations. In this section, we consider the solution of convection dominated

conveetion diffusion equations using DG spatial and TVD Runge-Kutta time discretizations. Most of the

discussion will be concentrated on the DG spatial discretization (method of lines) with periodic boundary

conditions. Boundary conditions carl be treated similar to the case of elliptic equations in the previous

section.

5.1. A simple example and basic ideas. V_ first follow Shu [98] to Inotivate tile key ideas and to

indicate a "pitfall" in the presence of second order derivative diffusion terms if one is not careful, through

the following initial value problem for the simple heat equation:

ut - u_ = 0 in (I), 27r) x (0, T), u(x,O) = sin(x) Vx E (0, 27r),

with periodic boundary conditions. It seems that ttle most natural way of extending the DG spatial dis-

cretization (2.3) would be simply to replace the flux /(u) by -u, and then proceed in a straightforward

way. Thus, we take the restriction of uh(-, ¢) to each element Ij in the local space bl(Ij), which we take to

be polynomials of degree at most k, and define uh(-, t) by asking that for all Vh C U(Ij),

(Uh(x,t))t _'h(X) dX + (_lh(X,t))x (Vh(X))xdX- (Uh)x(',t)Vh = 0, (5.1)
j J IX2--1/2

where, for the lack of up-winding inechanism in a heat equation one naturally takes a central numerical flux

We remark that, in an actual comt)utation, the scheme takes the simple form

d 1

+ + + = 0 (5.2)

where (Uh)j is a small vector of length k + 1 containing the coeiflcients of the solution uh in the local basis

inside the element lj, and A, B, C are (k + 1) x (k + 1) constant matrices which can be computed once

and for all and stored at tile beginning of the code. Time discretization can be achieved by the same TVD

Runge-Kutta methods discussed in section 2.2.
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TABLE 5.1

I, 2 and L °c' error.s and orders of accuracy for the inconsistent discontinuous (lalerkin method (,5. l) applied to the heal

equation ut = ux_- with initial condition u(x,0) -_ sin(:r), 7' = 0.8. Third order" Runge-Kutta in time.

k=[

h L 2 error order L vc error order L 2 error

27r/20 1.7813]-01 -- 2.58E-01 1.85E-01

27r/40 t .76E-01 0.01(; 2.50E4) 1 0.025 1.78E-01

2_r/80 1.75E-01 0.004 2.48E-01 0.012 1.77E-01

27r/160 1.75E-01 0.001 2.,18E-0t 0.003 1.76E-01

order L _ error

2.72E-01

0.049 2.55E-0t

0.013 2.51E-01

0.003 2.50E-01

order

0.089

(I.025

0.007

We compute with the scheme (5.1) and show in Table 5.1 the L '_ and L _ errors and numerically observed

orders of accuracy for the two cases k = 1 and 2 (piecewise linear and piecewise quadratic cases) to T = 0.8.

Clearly there is an order one error for both cases which does not decrease with a mesh refinement! V_ plot

the solutions with 160 cells in Fig. 5.1 and can clearly see that the coml)ut('d solutions have completely

incorrect amplitudes. The scheme is not consistent!

k=l, t=0.8, solid line: exact solution;
dashed line / squares: numerical solution

-04

-05

_6

4) 7

.... I,, I .... I .... i .... 1 , I
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X

k=2, I=0.8, solid line: exact solution;
dashed line / squares: numerical solution
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X

Fie. 5.1. The inconsistent discontinuous Galerkin method (5.1) applied to the heat equation ut = u_;_ with an initial

condition u(z,0) = sin(.r). '/'= 0.8. 160 (:ells. Third order Runge-Kutta in tirne. Solid line: the exact solution; dashed line

and squares symbols: the computed solution at the cell centers. Left: k = 1; Right: k = 2.

This is a very subtle case of inconsistency: the exact solution of our model problem does satisfy the

scheme (5.1) exactly! Hence one nfight base the judgment on one's experience with finite difference methods

and conclude that the method is consistent. However, those familiar with non-conforming approximations of

elliptic problems would relnember that a similar type of inconsistency was present in one of the first papers

on the subject, namely, the 1973 paper by Babugka and Zlgunal [14]; such a "variational crime," see also

Strang and Fix [102], could be controlled by the introduction of a term whose role was to "recover" the

continuity of the apt)roximation.

It is actually very dangerous that the scheme (5.1) produces a stable but completely incorrect sohltion.

If one was in a hurry and did not want to do the ground work of either a theoretical proof of convergence

or a testing of the method on the simple heat equation first which has a known exact solution, but rather

went to solve the complicated Navier-Stokes equations and produced beautiflfl color pictures, one would not

be able to tell that the result is actually wrong! In fact, the inconsistent scheme (5.1) has been used in the

literature for discretizing the viscous terms in the Navier-Stokes equations.
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()n the other hand, if we rewrite the heat equation 'ut = uxx as a first order system

"ut - qx = 0, q - u_. = 0, (5.3)

we can then ]orwtally use tile same discontinuous Galerkin method as ill section 2 for tile convection equation

to solve (5.3), resulting in the following scheme: find uh,qh, whose restriction to each element Ij are, for

each t, elements of the local space l_(Ij), which we again take to be polynomials of degree at most k, such

that for all Vh,Wh E LI(Ij),

(uh(x,t))tvh(x)dx + qh(x,t)(vt,(x))_dx --_h(',t)vh ._J ,/'_ =0, (5.4)

qh(_',t) wh(_)a_ + _,h(x,t) (Wh(_))_ a_ - i_h(',t) whl ,/" = 0,
) J

where, again for the lack of up-winding mechanism in a heat equation one naturally first tries the central

numerical fluxes:

_h(xj+_/2, ¢) = _ _-+j/,,, t) + Uh

4h(:rj+_/2, t) = _

We emphasize that the above formulation of the discontinuous Galerkin scheme is only formally similar

to that of the convection equation in section 2. In fact, there is no time derivative in the second equation in

(5.3) and it is not a hytmrbolic problem even though it is written into a system form with only first derivatives.

If we view the scheme (5.4) as a mixed finite element method then it lacks the usual sophisticated matching

of the two solution spaces for uh and qh (the same space is used for both of them). "Coinmon sense" in

traditional finite elements would hint that scheme (5.4) has no chance to work. However, in 1997 Bassi and

Rebay [18] were brave enough to try this method on the viscous terms in the Navier-Stokes equations and

seemed to have obtained very good results. Motivated by their work, in 1998 Cockburn and Shu [45] analyzed

this method and obtained conditions on the choice of the numerical fluxes uh (x.j+l/2, t) and qh(Xj+l/2, t)

which guarantee stability, convergence and a sub-optimal error estimate of order k for piecewise polynomials

of degree k. It turns out that tile central numerical fluxes (5.5) used by Bassi and Rebay [18] do satisfy these

conditions. No wonder their scheme converges in practice!

However, there are two t)roblems associated with the choice of the central nuinerical fluxes in (5.5):

(i) It spreads to five (:ells when a local basis is chosen for Uh in the element Ij. After qh is eliminated

the scheme becomes

d 1

d-_(uh)j + AU (A(uh)j-'2 + B(uh)j-i + C(uh)j + D(uh)j+l + E(tth)j+2) = O,

where (Uh)j is a small vector of length k + 1 containing the coefficients of the solution Uh in the local

basis inside the element Ij, and A, B, C D, E are (k + 1) x (k + 1) constant matrices which can be

computed once and for all and stored at the beginning of the code. The stencil here is wider than

that in (5.2).

(ii) The order of accuracy is one order lower for odd k. That is, for odd k the proof of the sub-optimal

error estimate of order k is actually sharp.

Both problems can be cured by a suitat)le choice of the numerical fluxes, proposed in Cockburn and Shu

[45]:

'_h (J:j+l/2, t) = tth(Xj-+l/2, t), qh(Xj+l/2, t) -_ qh(X_+l/2 , t), (5.6)
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TABLE 5.2

L 2 and L °c errors and orders of accuracy for the local discontinuous Galerkin method (5.4) with fluxes (,5.6) applied to

thc heal equation ut = u._._ with art initial condition u(x,0) = sin(x), T = 0.8. Third order Runge-Kutta in time.

k

h I, 2 error [ order [

2rr/20, u 1.92E-03 I - I

I !2rr/20, q 1.93E-03

27r/40, u 4.81E-04

j oo}2rr/40, q .t.81E-0_1

27r/8(}, u 1.20E-04

27r/80, q i 1.20E-0,1

27r/160, u 3.00E-05

27r/160, q 3.00E-05

1 k=2

7.33E-03 4.87E-05 2.30E-04

[.84E-03 6.08E-06 2.90E-05

4.62E-04 7.60E-07 3.63E-06

1.15E-0,1 9.50E-08 4.53E-07

that is, we alternatively take tile left and right tinlits for the nulnerical fluxes in uh and ql, (we could of

course also take the pair uh(x;+t/2,t ) and qh(x_+l/z,t) as tile fluxes). Notice that the evaluation of (5.6)

is simpler than that of the central fluxes in (5.5). Moreover, since the auxiliary variat)le qh can be readily

eliminated element-by-element, the actual scheme for uh takes the form of (5.2) (of course with different

constant matrices A, B and C) when a local basis is chosen. Hence the computational cost and storage

requirenmnt of scheme (5.4) with the numerical fluxes (5.6) is the same as that of the inconsistent schenm

(5.1), even though we now have nominally an additional auxiliary variable qh!

To illustrate the convergence properties of the scheme, we show in Table 5.2 the L'-' and L _ errors and

nnnierically observed orders of accuracy, for both uh and qh, for the two cases k = 1 and 2 (piecewise linear

and piecewise quadratic cases) to T = 0.8. Clearly (k + 1)-th order of accuracy is achieved for both odd

and even k and also the same order of accuracy is achieved for qh which approximates u_; this orders of

convergence have recently been proven by Castillo, Cockburn, Sch6tzau and Schwab [28]. We thus obtain

the advantage of mixed finite element methods in approximating the derivatives of the exact solution to tile

same order of accuracy as the solution themselves, yet without additional storage or computational costs for

the auxiliary variable qh!

Another possible modification to the inconsistent scheme (5.1) is given I)y Bamnann and Oden [21];

see also Oden, Babugka, and Baumann [84]. Basically, extra boundary terms were added to tile elenlent

boundaries such that, when one takes v = u and sums over all cells, the boundary contribution disappears

and one gets a nice L 2 norm stability control. The scheme now becomes: find Uh whose restriction to each

element Ij is, for each t, an element of the local space LI(Ij), which we again take to be polynomials of degree

at most k, such that for all vt, E bl(Ij),

(Uh(X,t))t vh(2;)dx + (tth(X,t))x (Yh(X))xdX -- ('ah)x(',t)Vh (5.7)

3
2£j--I/2

---_(Vh)x(Z-_+_/.,_)[Uh](Zj+_/2, t) -- (vh)+.(z+_,/.2)[u,](zj-+/.,., t) = 0

where

[11;] __ "tt_-t- -- //_-_

denotes the jump of the flmction w at the interface and, again for the lack of upwinding mechanism in a
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TABLE5.3
L 2 and L _ erTvrs and orders of accuracy for the Baumann-Oden discontinuous Galerkin method (5.7) applied to the heat

equation ut = uxx with an initial condition u(x,0) = sin{x), 7' -- 0.8. Third order Runge-Kutta in time.

k=l k=2

h L _ error order L _ error order L 2 error order L °c error order

2n/20 6.40E-03 1.25E-02 4.00E-03 -- 5.64E-03 -

2n/40 1.60E-03 2.00 3.14E-03 2.00 1.03E-03 1.95 1.46E-03 1.95

2_r/811 4.00E-04 2.00 7.85E-0,1 2.00 2.61E-04 1.99 3.68E-()-1 1.99

2n/160 9.99E-05 2.00 1.96E-04 2.00 6.53E-05 2.00 9.23E-05 2.00

heat equation, one naturally takes a central numerical flux

1 ((,Uh)x)(.l:j+ 1 -t-(Uh)x(X;+l/.2,t))(uh)_(xj+t/.,_, t) = -_ /._,,t) .

For coding t)url)oses, the equation (5.7) is the most convenient form; however it ndght be more illustrative

if we rewrite (5.7) into a global form: find uh wl|ose restriction to each element lj is, for each t, an eleinent

of the local space _[(Ij ), such that, for all vh whose restriction to each elenlent Ij is an element of U(Ij),

i (Uh(X,t))t Vh(X)dx + E (uh(x,t))x dx (5.8)(vh(x))_

j=| J

t-__ )-}-(Ith)x(Xj+l/2, t)[U h](x3+l/2) -- (V h)x (Xj+I/2)[ILh](3:j+I/2, ¢) = 0

where the numerical flux for (vh)_ is also a central flux

(_'h)_.(_j+_/'_)= _

The anti-symmetric nature of the boundary terms (which disappear when one takes vh = uh) is clearly seen

in the global formulation (5.8).

V_'e renmrk that once again we recover exactly the scheme in the form of (5.2) (of course with different

constant matrices A, B and C) when a local basis is chosen. Hence the computational cost and storage

requirement of scheme (5.7) is the same as that of the inconsistent scheme (5.11 or as that of the LDG

method (5.4)-(5.6). There is no saving in the computational Cost here over the method (5.4)-(5.6) even

though the latter has nominally an additional auxiliary variable ql,. This statement is valid when a linear

PDE is solved. For nonlinear problems the computational cost of the Bamnaim-Oden method (5.7) may be

smaller than that of the LDG method (5.4)-(5.6).

To illustrate the performance of this method, we show in Table 5.3 the L 2 and L '_ errors and numerically

observed orders of accuracy, for the two cases k = 1 and 2 (piecewise linear and piecewise quadratic cases)

to T = 0.8. Clearly (k + 1)-th order of accuracy is achieved for the odd k = 1 and k-th order of accuracy

is achieved for the even k = 2. Comparing with the results in Table 5.2 of the local discontinuous Galerkin

method, we can see that. for the same mesh, the Baumann-Oden method (5.7) has larger errors than the

local discontinuous Galerkin method (5.4)-(5.6) even for odd k where both are accurate of order k + 1.

5.2. The LDG methods for the scalar one-dimensional case. We now turn our attention to more

details about the LDG method, following the approach of Cockburn and Shu [45]. In this subsection, we

present and analyze the LDG methods for the following nonlinear model problem:

ut+f(u)_-(a(u)u_), =0, in (0,1) x (0, T) u(x,0) =u0(x) VxC (0,1),

with periodic boundary conditions.
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5.2.1. General formulation and main properties. To define the LDG method, we set b(u) =

_, introduce the new variable q = b(u) u_, and rewrite our model prol)lenl as folh)ws:

ut + f(u).. - (b(u) q)x = 0

q - g(u)._ = 0

u(z, O) = Uo(X)

in (0,1) x (0,T),

ill (0,1) X (0, T),

Vx c (0, 1),

where g(u) = .f_ b(s) ds. The LDG method for tile at)ore syst(un is now obtained by simply discretizing the

above system with the Discontinuous Galerkin method as follows.

As usual, for each time t, we take the restriction to the generic element Ij of the approximate solution

(Uh(-, t), qh (', t)) in the space Lt(Ij) x Lt(Ij). The initial data Uh(', 0) on Ij is taken to be the L%projection

of uo into L/(Ij), and for t > 0 the approximate solution is determined by requesting that, for all vh and

rh • b/(Ij),

S# _ I_'J+lt -"fl (uh(x,t))tVh(x)dx-- f(uh)(x,t)(vh)x(x)dx + f(uh)(',t)vh
j j x,-1/2

xj+

+ f b(_o,(z, t)) qh (t, x) (,,h)_ 0') dx - _h (, t)_,h
I/2

0,

•ll ._ x1-1/_

_ qh(x,t),'h(x)dx+_ 9(U,)(x,t)(rh)x(x)dx--'Oh(',t)rh x,+,/: =0.
j j ,x j-l�,2

The key to the success of the LDG niethod is the choice of the numerical fluxes. The numerical flux f(uh)

is taken exactly as in the case of the scalar hyperbolic conservation of section 2; in this way, the scheme

remains stable in the extreme case in which a = 0. The numerical fluxes associated to the term modeling

the diffusion are the following:

b_'qh __ [g(?/h)] {qh} -I- Cl,[Uh] -[- Cl2[qh], g(_h) ---- {.q(?th)} -- C12[t/h],

[_]

with Cll > 0. This completes tt;e definition of the LDG space discretization. Let. us emphasize the following

points:

• The above numerical fluxes were devised specifically to ensure that the tmmerieal scheme satisfies a

discrete version of the the classical "energy" stability. More precisely, with the above numerical fluxes we

get [45] that

1 2
Ez(uh,qh) <_ _Haolbmo,_),

where the "energy'" ET is given by

ll[ uh(T ) 2 2Er('Uh, qh ) = IIL2(oA) + tl qh Ilr_:((o,1)×(o.z)) +

r

fo E {C1'[uh]2}J+l/"dt
_<_j<_;

<
and C,, = C,, + _ f% (f(s)- f(u[_,u+)) ds.

This justifiesthe introductionof the function b(u)= _ and the definitionq = b(u)u. which thus

allows to obtain boundedness ofthe scheme forthe non-linearproblem.

Finally, note that this boundedness result assumes that we are performing the integration exactly. In

practice, when strong non-linearities are present, high-order quadrature rules might be mandatory in order
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to maintain tile boundedness of tile scheme. An example of this situation call be found in the work of

Lomtev, Kirby, and Karniadakis [83] who showed that, in order to produce high-quality approximations,

over-integration of one or even two extra degrees of accuracy is necessary when steep gradients on the

at)t)roximate solution appear near the t)oundary.

• In tile linear case f' -- c and a(-) = a, if we use polynomials of degree k, it was proven [45] that, if the

exact solution is smooth enough, then

ET(U - uh, u,. - qh) <_C h k,

where if a = 0, the constant C is of order h 1/''. This error estimate gives a sub-optimal order of convergence,

but it is sharp for the LDG methods. Indeed, Bassi et al [20] report an order of convergence of order k + 1

for even values of k and of order k for odd values of k for a steady state, purely elliptic problem for uniform

grids and for C identically zero. The numerical results for a purely parabolic problem displayed in [45] lead

to the same conclusions.

• On the other hand, for the special numerical flux (5.6), c > 0, and quite general boundary conditions,

Castillo [26] and Cockburn, Castillo, SchStzau and Schwab [28] showed that the order of conw_rgence in the

Le-norm of both u - uh and u, - qh is k + 1; the h-version was studied ill [26] while the hp-version of this

method was studied in [28].

5.3. The LDG methods for the multi-dimensional case. In this subsection, we consider the LDG

methods fi_r the following convection-diffusion model problem

ut+V.(f(u)-a(u)Vu)=O in(0,1)dx(0, T), u(x,0)=u0(x) VzE(0,1) a,

with periodic boundary conditions. Essentially, the one-dimensional case and the multi-dimensional case

can be studied in exactly the saane way. However, there are two important differences that deserve explicit

discussion. The first is the treatment of the matrix a which is assumed to besymmetric, semi-positive definite

and the introduction of the auxiliary variable q; and the second is the treatment of arbitrary meshes.

To define the LDG method, we first notice that, since the matrix a(u) is assumed to be symmetric and

semi-positive definite, there exists a symmetric matrix b(u) such that a = be. This allows us to introduce

the auxiliary variable q = b V_, and rewrite the model problem as follows:

ut + V . f(u) - V • (b(u)q) = 0

q, = V "g_(u)

u(a', O) = uo(x)

in (0,1) 'l x (0, T),

in (0, 1) a x (0, T),

V x E (0, 1) a,

l<i<d,

where qi is the i-th component of the vector q, and gi (u) is the vector whose j-th component is f_ bji(s) ds.

The LDG method is now obtained by discretizing the above equations by the Discontinuous Galerkin method.

Let T/, t)e a triangulation of the domain (0, 1) d. We seek an approximation (Uh, qJ_) such that for each

time t, its restriction to the element K E Th is in the space M(/£) x _d(/_-). We take the restriction of Uh (-, 0)

to K to be the L 2 projection of Uo into H(K) and determine the at)proximate solution for t > 0 by imposing

that, for vh E H(K) and rh E Q(K):
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Finally, just like in the one-dimensional case, we take f - nob" as we did in the purely convective case and

d d

bqh_ = Z [gia,][Uh]{q,_,h} + C,, ['u,,,]+ Z C,_[qi,h], .q(uh) -----{g0, } - C,_[uh].
i=l i=l

For this method, we have properties similar to those obtained in the one-dimensional case:

• Energy stability:

where the "energy" ET is given by

1
IlL---IO,lt,Er('uh,qh) <-- _11_o .2

1 ,) j0"/"ILL2((0,1) x(0,T)) +ET(r'lh,qh) = _ll,.,(r)IIZ,lo.) + Ilqh :_ Z {Cll 2[uh] }j+l/2 dr.

l_<j<_N

": (:(.,I-,,,+,))and Cll = Cll + 7_-'[,,7,
• In the linear case f' - c and a(.) - a, if we use polynonfials of degree k, it was proven [45] that, if the

E.r(u- "uj,,u..- qh) < C h'_,

exact solution is smooth enough, then

where if a = 0, the constant C is of order h 1/2.

5.4. A remark and extension to multi-dimensional systems. The main advantage of these ineth-

ods is their extremely high parallelizability and their high-order accuracy which render them suitable for

computations of convection-dominated flows. Indeed, although the LDG method ha,w_ a large amount of

degrees of freedom per element, and hence more computations per element are necessary, its extremely local

domain of dependency allows a very efficient parallelization that by far compensates for the extra amount

of local colnputations.

The LDG methods for multi-dimensional systems, like for example the compressible Navier-Stokes equa-

tions and the equations of the hydrodynmnic model for semiconductor device simulation, can he easily

defined by simply applying the procedure described for the umlti-dimensional scalar case to each component

of u. In practice, especially for viscous terms which are not symmetric but still semi-positive definite, such

as for the coinpressibh_ Navier-Stokes equations, we can use q = (c9_._u, ..., 0_, 'u) as the auxiliary variables.

Although with this choice, the L2-stability result will not be available theoretically, this would not cause any

problem in practical implementations, and does not seem to affect the excellent stability of the method in

actual calculations.

5.5. Incompressible Navler-Stokes equations. For the two dimensional incompressible Navier-

Stokes equations in a vorticity - stream function formulation, Liu and Shu [79] and [80] developed a numerical

method based on a DG and LDG discretization for the vorticity equation including the viscous terms, a

standard Poisson solver using continuous finite elements for the streamfunction, and a TVD Ptunge-Kutta

time discretization. There is a natural matching between the two finite element spaces, since the normal

component of the velocity field is continuous across element boundaries. This allows for a correct upwinding

gluing in the discontinuous Galerkin framework, while still Inaintaining total energy conservation with no

numerical dissipation and total enstrophy stability. In [79], a proof is given for L 2 stability, both in the

total enstrophy (L 2 norm of the vorticity) and in the total energy (L 2 norm of the velocity), which does not

depend on the regularity of the exact solutions. For smooth solutions error estimates are also obtained in
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[79]. Schemes with provable L 2 stability for both total energy and total enstrophy are very rare. Liu and Xin

[81] used this nice stability l)roperty to show that tile method in [79] converges with a vortex sheet initial

data having only positive vorticity.

We present here one mmmrical example taken fI'om [80], for a double shear layer problem. This is a

l)Ol)ular benchniark problem for numerical methods of incompressible flows. Tile method in [79] is able to

capture features of tlle sohltion with very high gradients in a nice way. A higher order method is doing

better in this respect than a lower order one. Ill Fig. 5.2, the simulation result with a uniform rectangular

mesh of 256 × 256 cells with a piecewise quadratic method up to T = 8 is shown at the left for a very

thin shear layer with a very high Reynolds number Re=70000/2_r. We notice that the numerical method is

still stable in this case. A time history for energy and enstrophy shows that the physical viscosity is still

donlinating the numerics at such high Reynolds numbers, according to the decay of energy and enstrophy.

This indicates that the built-in nuInerical viscosity of tile inethods is very small. For conlt)arison, at the

right of Fig. 5.2 tile result of piecewise linear method for the same mesh is shown for a much lower Reynolds

number Re=20000/2rr.
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5O

5(3 100 iS0 2OO 25O

Fit;. 5.2. Contour o/ vorticity w at T = 8. 30 equally spaced contour lines between w = -14.5 attd _' = 14.5. Thin shear

layer cot'responding to p = 7r/100. Re--70000/2n. 256 × 256 cells with P2/Q2 scheme (left). As a comparison, we also plot

the result of 256 × 256 cells with PI/Q1 scheme coraputation with Re=20000/27r (right).

5.6. More numerical results. In this subsection, we present some numerical results to demonstrate

the perfornmnce of LDG method for nmlti-dimensional convection diffusion systems.

• Smooth, steady state solutions. We start by displaying the convergence of tile method for a p-

refinement done by Lomtev and Karniadakis [82]. In Fig. 5.3, we can see how the maximunl errors in density,

momentun,, and energy decrease exponentially to zero as the degree k of the approximating polynomials

increases while the grid is kept fixed; details about the exact solution can be found in [82].

Now, let us consider the laminar, transonic flow around the NACA0012 airfoil at an angle of attack of

ten degrees, free stream Math number M = 0.8, and Reynolds munber (based on the free stream velocity

and the airfoil chord) equal to 73; the wall temperature is set equal to tile free stream total temperature.

In Fig. 5.4, taken from [82], we see the Inesh and the Mach isolines obtained with polynomials of degree

two and four; note tim improvement of the solution. Bassy and Rebay [18] have computed the solution of

this problem with polynomials of degree 1, 2, and 3 and Lomtev and Karniadakis [82] trove tried the same

test problem with polynomials of degree 2, 4, and 6 in a mesh of 592 elements which is about four times less

56



elements than the mesh used by Bassi and Rebay [18]. In Fig. 5.5, taken from [82], we dist)lay the pressure

and drag coefficient distributions computed by Bassi and Rebay [18] with polynomials (m degree 3 and the

ones computed by Lomtev and Karniadakis [82] computed with polynomials of degree 6. We can see good

agreement of both computations.

P

H_
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o

-10

-12

• d

4--"

-___ J____• : _ _ _

6 8 lO 12 14

Number of Modes

Iqc. 5.3. Maximum errors o/the density (triangles), momentum (circles) and energy (squares) as a/unction o/ the degree

o/the approximating polynomial plus one (called "number o/modes" in the picture).

• Unsteady solutions. To end this subsection, we t)resent the computation of an unsteady solution by

Lonltev and Karniadakis [82]. Tim test problem is the classical problem of a flow around a cylinder in two

space dimensions. The Reynolds number is 10,000 and the Maeh number 0.2.

In Fig. 5.6, details of the mesh of 680 triangles (with curved sides fitting the cylinder) and the density

around the cylinder are shown; polynomials whose degree could vary (from 1 to 5) front element to element

were used. Note how the method is able to capture the shear layer instability observed experimentally.

6. Hamilton-Jacobi equations. In this section, we discuss the RKDG method for solving the follow-

ing Hamilton-Jacobi (H J) equations

_, + H(V_9) = 0, _(x,0) = _('(x). (6.1)

We will mainly follow the 1999 paper by Hu and Shu [64], and the 2000 papers by Lepsky, Hu and Shu

[76] and Hu, Lepsky and Shu [63]. The solutions to (6.1) are usually Lipsehitz continuous but may have

discontinuous derivatives, regardless of the smoothness of the initial condition _°(x). The non-uniqueness

of such solutions also necessitates the definition of viscosity solutions, to single out. a unique, practically

relevant solution; see Crandall and Lions [47].

In many applications, practitioners are interested in solving (6.1) on an arbitrary triangulation in multi-

space dimensions; there are several numerical schemes for this situation. Indeed, first order monotone type

finite volume schemes and their second order extensions were studied by Abgrall in [1]. A second order ENO

(essentially non-oscillatory) type finite volume scheme was developed by Lafon and Osher in [75]; see also
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the work of Augoula and Abgrall in [13]. However, higher order finite volume schemes face tile problem of

reconstruction oil arbitrary triangulation, which is quite complicated.

It is well known that the Hamilton-Jacobi equation (6.1) is closely related to a conservation law (2.1),

in fact in one space dimension d = 1 they are equivalent if one takes _ = u_. It is thus not surprising

that many successful nulnerical methods fur the Hamilton-Jacobi equation (6.1) are adapted from those for

the conservation law. Such examples include the high order finite difference ENO methods in Osher and

Sethian [86], Osher and Shu [87], and WENO methods in Jiang and Peng [69]. However, it seems that such

adat)tation is more difficult for unstructured meshes, especially for finite element methods which are usually

ba.se(t on integration by parts. The RKDG method we will discuss below is such an adaptation.

6.1. One space dimension. In one space dimension (6.1) becomes

_t + H(_) = 0, _2(x, 0) = _°(x). (6.2)
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This is a relatively easy case because (6.2) is equivalent, to the conservation lag,

ut + H(u)= = O, u(z,O) = u°(a ") (6.3)

if we identify u = _. If we take the local space L/(/_j) to t)e the set of all polynonfials of degree at most k

and denote it by Pk(Ij), then a k-th order discontinuous Galerkin scheme for (6.2) ean be defined a_s follows:

59



fil,(t Ch, whose restriction to x E I_ for each t is in P_'(Ij), such that for all Vh E Pt" _(Ij),

(_h(x,t))xt_'h(x)dx-- H((c2h(:r,t))x)vh(x)dx + _I((c2,,(.,t))_)'_,,lj,, ,/" =(), (6.4)
J

Here the numerical flux

is again a monotone flux, i.e. £r is non-decreasing in tile first argument and non-increasing in the se(:ond,

is Lii)schitz continuous ill both arguments, and is consistent, i.e. H(u, u) = H(u). We will mainly use the

simple (local) Lax-Friedrichs flux

fi(u_,u+)=H(U-+u+) 1 +2: - _c_(u -'u-) (6.6)

where a = nlax, IH'(u)l with tile maximum taken over the range covered by u- and u +. For other monotone

fluxes, e.g. tile Godunov flux, see section 2.1. Notice that tile method described above is exactly the

(liscontinuous Galerkin method for the conservation law equation (6.3) satisfied by the derivative u = _._.

This only determines _h for each element up to a constant, since it is only a scheme for c2_.. Tile missing

constant can be obtained in one of the following two ways:

(i) By requiring that the residue has zero Ineml ill each element I), i.e.

fll ((_h(x,t)) t + H((cgh(x,t))_) ) dx = 0; (6.7)
J

(ii) By using (6.7) to update only one (or a few) elements, e.g., the left-most element I1, then use

SOh(Xj, t) = _h(xl, t) + (_h(Z, t)), dx (6.8)
1

to determine the missing constant for the ('.ell Ij.

We remark that, in the second dpproach, the recovered values of qoh are dependent upon the choice of the

starting point xl. However this difference is on the level of truncation errors and does not affect the order

of accuracy. Both approaches are used in our numerical experiments. They perform similarly for smooth

problenls, with the first approach giving slightly hetter results. However, it is our numerical experience that,

when there are singularities in the derivatives, the first approach will often produce dents and bumps when

the integral path in time passes through tile singularities at some earlier time. The philosophy of using

tile second apt)roach is that one could update only a few elements whose tinle integral paths (to not cross

derivative singularities.

About tile stal)ility of tile method proposed above, using the cell entropy inequality (which implies L '-)

stability) for the method of lines DG method for scalar nonlinear conservation laws in Jiang and Shu [68],

we can easily obtain a uniform total variation bound for the numerical solution _h, see [64] for details. This

is actually a rather stroug stability result, considering that it applies even if the derivative of the solution

_2_ develops discontinuities, no limiter has been added to tile numerical scheme, and the schenle Call be

of arbitrary high order ill accuracy. It also implies convergence of at least a subsequence of the numerical

solution _l, when h -+ 0. However, this stability result is not strong enough to imply that tile limit solution

is the viscosity solution of (6.2).

Time discretization of (6.3) is again by the TVD Runge-Kutta methods discussed in section 2.2.
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6.2. Multi-space dimensions. Next we will discuss the case of nmlti-spatial dimensions, using the

two-dimensional case to illustrate the ideas; the algorithm in more spatial ¢timensions is similar. This time,

the scalar Hamilton-Jaeobi equation

4, + H(_:r,,_.r_) = 0, _(x,0) = _°(x), (6.9)

is in some sense equivalent to the following conservation law system

ut + H(u,v)_, = 0, v, + H('a,v)x, = 0, (u(x,0),v(x,0)) = (u°(x),v°(x)). (6.1o)

if we identify

(u,v) = V@. (6.11)

For example, a vanishing viscosity solution of (6.9) corresponds, via (6.11), to a vanishing viscosity solution

of (6.10), and vice versa [70]. However, (6.10) is not a strictly hyperbolic system, which may cause problems

in its numerical solution if we treat u and v as independent variables. Instead, we would like to still use

Fh as our solution variable (a polynomial) and take its derivatives as ut, and vh. This is the main thrust of

the discontinuous Galerkin method developed in [64] and later in [76] and [63] for solving nmlti-dimensional

Hamilton-Jacobi equations.

The solution procedure, for a DG spatial discretization and Euler forward time stepping (TVD Runge-

Kutta time stepping is just a confl)ination of several Euler forward steps), consists of the following:

• Use the DG discretizatioll for the hyperbolic system (6.10) with a local Lax-Friedrichs flux (see section

3), taking (uh, vh) at time level 7t by (6.11), and take a forward Euler time step to get a provisional value of

(ah, vh) at time level n + 1;

• Determine V_t, at time level ,_ + 1 by a least square procedure:

II - = rain IIV'#.,h - (uh, vh)lILy-(K); (6.12)
_,h6Pk'(K}

• The missing constant can again be obtained in one of the following two ways:

(it By requiring that the residue has zero mean in each element K, i.e.

•/h" ((_h(x, t)), + g(v_h(x, t))) dx = O, (6.13)

(ii) By using (6.13) to update only one (or a few) elements, e.g., the corner element(s), then use

Lo_h(B,t) = ph(A, t) + (_h),, dXl -b (_h)x2 dx2, (6.14)

to detcrnfine the missing constant. The path should be taken to avoid crossing a derivative discon-

tinuity, if possible.

We remark again that, in the second approach, the recovered values of _h are dependent upon the choice

of the starting point ,4 as well as the integration path. However this difference is on the level of truncation

errors and does not affect the order of accuracy. It is important here that _oh is a single flmction and uh and

vh are just its derivatives. Otherwise the second approach would be questionable in effectively recovering

_h.

It can be proven [76] that the least square procedure (6.12) maintains the mean values of u and v (that

is, the mean values of (_h)x, equal that of u and the the mean values of (_2h)x_, equal that of v) and does

not increase the L_-norIn of V_h (that is, the L2-norm of VFh is no bigger than the sum of the L_-norms of

u and v). Thus it does not destroy the nice stability property of the RKDG method.
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6.3. Numerical examples. W_ will show two numerical examples here to illustrate the RKDG method

for two (timensional Hamilton-Jacobi equations. More examples can be found in [64], [76] and [63].

The first example is tile problem of a t)rot)agating surface on the unit disk:

{ _t - (1 - eK) _/1 4- _2, 4- c7_., = 0,
(6.15)

where K is tile mean curvature defined l)y

and _ is a small constant, with a Neumaml type t)oundary condition g7_ = 0.

This problem (defined on a rectangle rather than on a circle) was studied in [86] by using the finite

(tifference ENO schemes. It is difficult to use rectangular meshes when the domain is a circle. Instead, we

use the triangulation shown in Fig. 6.1. Notice that the mesh has been refined near the center of the domain

where the solution develops discontinuous derivatives (for the _ = 0 case). There are 1792 triangles and 922

nodes in this triangulation. The solutions with c = 0 are displayed in Fig. 6.2, and that with c = 0.1 are

displayed in Fig. 6.3. Notice that the solution at t = 0 is shifted downward by 0.2 to show the detail of the

solution at later time.

Next we t)res('nt a t)robh_nl fl'om computer vision [93]:

{ _, + I(x)X/1 + _, + _).., - 1 = 0,_(x, o) = o,

-l<xl <l,-l<x2<l,
(6.17)

with _ = 0 ms the boundary condition. The steady state solution of this l)roblenl is the shape lighted by

a source located at infinity with vertical direction. The solution is not unique if there are points at which

I(x) = 1. Conditions nmst be prescribed at those points where I(x) = 1. Since our method is a finite

elenmnt method, we need to prescribe suitable conditions at the corresponding elements. We take

I(x) = 1/¢1 + (1 -I.qL'l I)2 4- (1 --Ix21)-'.

The exact steady solution is _(x, oc) = (1 -Ix1 ])(1 -]x21). We use a uniform rectangular mesh of 40 x 40

elements and imt)ose the exact boundary conditions for u = _2_,v = _.: fi'om the above exact steady

solution, and take the exact value at one point (the lower left corner) to recover _h- The results for p2 and

p3 are presented in Fig. 6.4, while Fig. 6.5 contains the history of iterations to the steady state, indicating

a nice convergence to machine zero of the numerical residue.

7. Ongoing work and open problems. One of the major trends in computational partial differential

equations is the devising of efficient adaptive methods. As we have argued in this paper, the DG methods

are ideally suited for achieving this objective not only in computational fluid dynamics hut also for a wide

variety of problems of practical interest.

Because of this, they have been the subject of a vigorous study from the theoretical, computational and

practical application points of view as is attested in the proceedings of the First International Symposium

on Discontinuous Galerkin Methods [40]. In this section, we do not review the research presented in those

proceedings; instead, we bring to the attention of the reader some of the problems which we feel would be

interesting to solve.
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FI(;. 6.1. Triangulation .[or t,he propagating surfaces on a disk.

7.1. Generalized slope limiters. As we have seen, an important colnponent of the RKDG method

for transient non-linear hyperl)olic systems is the generalized slope limiter. Although we have shown a

generalized slope limiter that works very well, fllrther research on limiters is very (lesirable.

First of all, let us emphasize that the limiter is not necessary for linear problems, but is indispensable

for non-linear problems. This has t)ecn shown in the short essay by Cockl)urn [33], for non-linear scalar

conservation laws, where it is t)ointed out that the limiter plays a role similar to that played by the shock-

capturing terms of the streamline-diffusion method.

Further research is needed to find an efficient way of estimating the t)arameter __I by ineans of which

the limiter AIlh,At maintains the accuracy of the scheme at critical points. An ideal solution would be if this

could be achieved in terms of the approximate solution only, and if this could be easily apI)lied to general

hyperbolic systems.

Another challenging problem is how to devise a limiter that is free from such a parameter. The limiter

of Biswas, Devine and Flaherty [22] has such a property; however, no stability results have been proven for

this limiter and it only works in Cartesian grids with tensor produt:t polynomial approximations.

7.2. Time-stepping techniques. In order to be able to perform adaptivity while nmintaining the

high parallelizability of the DG methods, new high-order accurate time-stepping methods would have to be

created which could use different time steps at different locations. The st)ace-tiIne DG methods could be

used to this effect, but they tend to be rather difficult to code.

Another possibility is to extend to high-order accurate schemes the approach used in 1995 by Dawson

[49] to devise a first-order accurate, cortservative variable time-stepping scheme; a significant achievement in

this direction is the recent paper by Dawson and Kirby [50] who found how to obtain sccond-order accurate

schemes of this type.

Non-conservative time-stepping methods (:an also lead to efficient time discretizations, but one has to
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be very careflfl to exert a tight control on the loss of mass, est)e(:ially near the discontinuities; an example of

this technique is the local time stepping introduced in 1997 by Flaherty, Loy, Shephard, Szymanski, Teresco,

and Zianz [54].

7.3. Enhanced accuracy by post-processing. It is always very advantageous to know how to locally

post-process the approximate solution in order to obtain a better approximation; this is particularly true

in the fl'amework of a posteriori error estimation and adaptive algorithms. For DG methods, this has been

(tone, so far, in two different ways: By finding super-convergence points and by a local convolution.

In 1994, Biswas, Devine, and Flaherty [22] gathered numerical evidence that, when rectangular elements

are used, the approximate solution of the DG method super-converges at the Gauss-Radau points. This fact
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was exploited for adaptivity tmrposes then and recently proven by Adjerid, Flaherty and Kridonow_ [4]; see

also the pal)ers by Adjerid, Aiffa and Flaherty [2] and [3]. Further understanding of this 1)henomena is very

important.

Also recently, Cockburm Luskin, Sire and Siili [42] showed that in some cireumstmlces, it is possible to

locally t)ost-process the approximate solution of linear hyperbolic systems given by the DG space approxi-

mation and obtain an order of accuracy of order 2 k + 1 instead of the expected order of k + 1/2. The idea

is based on a technique introduced t)y Bramble and Schatz [24] in the framework of finite element methods

for linear ellipti(' prot)lems; it requires focally uniforin grids.

Let us illustrate the above result t)y showing some numerical results reported in [42]. We consider the

model problem:

ut + Ux = 0, in (0, 1) x (0, T), u(x, 0) = sin(2rrx) for z E (0, 1),

sut)jeet to periodic boundary conditions. We denote by Uh the approximate solution obtained by using the

DG method with piecewise polyilomials of degree k over uniform grids of spacing h. We also consider the

* = bi'ki)ost-processed approximation u h h * Uh, where the convolution kernel /t'/k is a linear combination of

B-splines that has sut)port in [-h(k - 1/2), h(k + 1/2)] and reproduces t)olynomials of degree 2k + 1 by

convolution.

In Fig. 7.1 we display, for T = 0.1 and h = 1/10 and h = 1/20, the errors x _ u(T,x) - uh(T,x)

and x _ a(T,x) -u_(T,x) for k = 1 and in Fig. 7.2 for k = 2. Note how the oscillations in the error

x _-_ u(T,.r) - uh(T, x) typical of finite element methods are remarkably reduced after the post-processing.

Finally, in Table 7.1, we can see that the post-processed approximate solution converges with order 2 k + l,
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FIG. 7.1. The errvrs u - uh (solid line) and u - u"h (dots) at T = 0.1 for h = 1/10 (left) and h = 1/20 (right). The

function u is the smooth exact solution, uh is the approximation given by the DG method with polynomials of degree one, and

u"h is the post-processed solution.

7.4. Application to non-convection-diffusion problems. So far, the main application of RKDG

methods has been to compressible fluid flow, but there are many other problems on which a DG method

could be very advantageous. For example, wimn applied linear problems like Maxwell's equations, the mass

matrix can be made to be the identity regardless of the polynomial degree and, moreover, the slope limiter

does not need to be used to guarantee stability. Also, applications of DG methods to other situations like

wave propagation phenomena in general, linear and non-linear solid mechanics, and non-linear equations like

the Korteweg-de-Vries equations, just to name a few, has only began.
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TABLE 7.1

ut + ux = O, smooth solution.

Before postprocessing

L 2 error order L ':¢ error

10 3.29E-02

20 5.63E-03

40 1.16E-03

80 2.72E-04

160 6.68E-05

320 1.66E-05

10 8.63E-04

20 1.07E-04

40 1.34E-05

80 1.67E-06

160 2.09E-07

10 3.30E-05

2O 2.06E-06

40 1.29E-07

50 5.29E-08

10 1.02E-06

20 3.21E-08

30 4.23E-09

Afl,er i)ost processing

L'-' error order L _ error order

5.81E-02

1.06E-02

2.89E-03

8.08E-04

2.13E-04

5.45E-05

2.86E-03

3.69E-04

4.63E-05

5.78E-06

7.23E-07

9.59E-05

6.07E-06

3.80E-07

1.56E-07

2.30E-06

7.30E-08

9.66E-09

2.55 2.96

2.28 3.01

2.09 3.00

2.03 3.00

2.01 3.00

3.01

3.00

3.00

3.00

4.00

4.00

4.00

order

pl

2.45

1.88

1.84

1.93

1.96

p_

2.95

3.00

3.00

3.00

p'3

3.98

4.00

4.00

p4

4.98

4.99

5.00

5.00

3.01E-02 --

3.84E-03 2.97

4.79E-04 3.00

5.97E-05 3.00

7.45E-06 3.00

9.30E-07 3.00

2.52E-04

5.96E-06 5.40

1.53E-07 5.29

4.22E-09 5.18

1.27E-10 5.06

1.64E-05

7.07E-08 7.85

2.91E-10 7.92

5.03E-11 7.87

1.98E-06

2.20E-09 9.82

4.34E-11 9.68

4.22E-02

5.44E-03

6.78E-04

8.45E-05

1.05E-05

1.32E-06

3.57E-04

8.41E-06

2.16E-07

5.97E-09

1.80E-10

2.31E-05

1.00E-07

4.15E-10

7.24E-11

2.81E-06

3.11E-09

6.66E- 11

5.41

5.28

5.18

5.06

7.85

7.91

7.83

9.82

9.48
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7.5. Relation of the LDG method with other methods. A deep study of the relation of the DG

methods to already existing nmthods could prove to be very illuminating not only from the theoretical point

of view but also form the practical t)oint of view since then it would be known for what situations it is more

advantageous to use one method or the other. A first effort in this direction has/)een done by Arnold, Brezzi,

Cockt)urn and Marini [11] who established a unified framework to study and conlpare the LDG nlethod and

ahnost all other DG methods for elliptic problenls. This theoretical study should tie followed by a most

needed coiuputational study.

It would also be very interesting to understand how to couple DG methods with other Inethods. This

is of great practical interest since in many practical situations, already existing methods (and (:()des!) work

just fine in some parts of tile domain but not in others where the use of a DG method could be indispensable.

For example, in tile franlework of CFD. the pra(:titioner nlight want to use tile LDG only on a region in

which the convection has a strong effect and use elsewhere another method that works well when diffusion

dominates.

A significant effort in this direction has been recently done by Perugia and Sch6tzau [88] who showed

how to couple the LDG method with the classical confornfing finite element method for the model elliptic

liroblem of the Laplacian operator. Their motivation conies from a prol)lenl involving rotating electrical

machines which are triangulated independently of each other; see [8] for details. In this instance, the LDG

is us(,d to deal with tile hanging nodes that naturally arise in this problem.

The coupling is done as follows. The LDG method is applied on the donlain i2LD_; and the confornling

method on l_(, = i_ \-_LDC;. Tile coupling is done at the c.onunon boundary of _LD(; and Q(. which we

(t(qlote by F. To define tile LDG on _L#)(;, the boundary F is considered to be a Dirichlet boundary on which

tile (lata is the value given by the trace of the conforming approximation oll F . To define the confornling

method on llc., the boundary F is now considered to t)e a Neumann boundary oil which data is given by tile

corresponding numerical flux of the LDG method.

Perugia and SchOtzau [88] proved that when elements of degree k are used on each variable, optimal

orders of convergence are achieved. Next, we display sonic of their numerical results. In Fig. 7.3. we show

the grids used in tile exI)eriments; note that tile domain l_#.D(; contains all the lmnging nodes and shrinks

towards them as the meshes are refined. In Table 7.2 we can see that tho error in tile energy senti-norm,

llanlety,

and the L 2 norm of It - Uh converge with optimal order, as expected. This shows that the coupling of the

LDG and the conforming method can be successfully carried out.

7.6. Efficient steady state solvers. One 1)roblem with following physical time to reach steady states

for convection donlinated convection diffusion problems using RKDG and LDG methods is that the CFL

condition for L2-stability severely restricts the allowable time step At, making the marching in time rather

slow. Various preconditioning and multigrid techniques would seem desirable here. A challenge is that one

would not want to give up the extremely local property of the method which is responsible for its high parallel

efticiency. Such techniques could also t)e useflfl for tinle dependent calculations through the introduction of

;t pseudo time.
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FIG. 7.3. GT'ids used in the numerical experiments. non nested grids with 320 and 1280 element._ with hanging

nodes on the line y = () (bottom). The domain i_l,D(; is shadowed.

TABLE'7.2

Errors and orders of conve_yenee for the coupling of the LDG and the eonfroming finite element menthod.

reduction Energy seminorm L 2 nornl of u

in h error order error order

2.0

2.0

2.0

4.1970e 1 -

2.2287e-1 0.91

1.1428e- 1 0.96

5.7895e-2 0.98

5.4264e 2 -

1.4189e 2 2.25

3.6103e-3 1.66

9.1301e-4 1.98
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